Metamath Proof Explorer


Theorem elimasng

Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006) TODO: replace existing usages by usages of elimasng1 , remove, and relabel elimasng1 to "elimasng".

Ref Expression
Assertion elimasng ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ↔ ⟨ 𝐵 , 𝐶 ⟩ ∈ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 elimasng1 ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ↔ 𝐵 𝐴 𝐶 ) )
2 df-br ( 𝐵 𝐴 𝐶 ↔ ⟨ 𝐵 , 𝐶 ⟩ ∈ 𝐴 )
3 1 2 bitrdi ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ↔ ⟨ 𝐵 , 𝐶 ⟩ ∈ 𝐴 ) )