Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006) Revise to use df-br and to prove elimasn1 from it. (Revised by BJ, 16-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elimasng1 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ↔ 𝐵 𝐴 𝐶 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → 𝐶 ∈ 𝑊 ) | |
| 2 | imasng | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 “ { 𝐵 } ) = { 𝑥 ∣ 𝐵 𝐴 𝑥 } ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐴 “ { 𝐵 } ) = { 𝑥 ∣ 𝐵 𝐴 𝑥 } ) | 
| 4 | simpr | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ 𝑥 = 𝐶 ) → 𝑥 = 𝐶 ) | |
| 5 | 4 | breq2d | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ 𝑥 = 𝐶 ) → ( 𝐵 𝐴 𝑥 ↔ 𝐵 𝐴 𝐶 ) ) | 
| 6 | 1 3 5 | elabd2 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ↔ 𝐵 𝐴 𝐶 ) ) |