Metamath Proof Explorer


Theorem elimasng1

Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006) Revise to use df-br and to prove elimasn1 from it. (Revised by BJ, 16-Oct-2024)

Ref Expression
Assertion elimasng1 ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ↔ 𝐵 𝐴 𝐶 ) )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝐵𝑉𝐶𝑊 ) → 𝐶𝑊 )
2 imasng ( 𝐵𝑉 → ( 𝐴 “ { 𝐵 } ) = { 𝑥𝐵 𝐴 𝑥 } )
3 2 adantr ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐴 “ { 𝐵 } ) = { 𝑥𝐵 𝐴 𝑥 } )
4 simpr ( ( ( 𝐵𝑉𝐶𝑊 ) ∧ 𝑥 = 𝐶 ) → 𝑥 = 𝐶 )
5 4 breq2d ( ( ( 𝐵𝑉𝐶𝑊 ) ∧ 𝑥 = 𝐶 ) → ( 𝐵 𝐴 𝑥𝐵 𝐴 𝐶 ) )
6 1 3 5 elabd2 ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ↔ 𝐵 𝐴 𝐶 ) )