Step |
Hyp |
Ref |
Expression |
1 |
|
noel |
⊢ ¬ 𝐶 ∈ ∅ |
2 |
|
snprc |
⊢ ( ¬ 𝐵 ∈ V ↔ { 𝐵 } = ∅ ) |
3 |
2
|
biimpi |
⊢ ( ¬ 𝐵 ∈ V → { 𝐵 } = ∅ ) |
4 |
3
|
imaeq2d |
⊢ ( ¬ 𝐵 ∈ V → ( 𝐴 “ { 𝐵 } ) = ( 𝐴 “ ∅ ) ) |
5 |
|
ima0 |
⊢ ( 𝐴 “ ∅ ) = ∅ |
6 |
4 5
|
eqtrdi |
⊢ ( ¬ 𝐵 ∈ V → ( 𝐴 “ { 𝐵 } ) = ∅ ) |
7 |
6
|
eleq2d |
⊢ ( ¬ 𝐵 ∈ V → ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ↔ 𝐶 ∈ ∅ ) ) |
8 |
1 7
|
mtbiri |
⊢ ( ¬ 𝐵 ∈ V → ¬ 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ) |
9 |
8
|
con4i |
⊢ ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) → 𝐵 ∈ V ) |
10 |
|
elex |
⊢ ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) → 𝐶 ∈ V ) |
11 |
9 10
|
jca |
⊢ ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) → ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) |
12 |
|
elimasng1 |
⊢ ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ↔ 𝐵 𝐴 𝐶 ) ) |
13 |
12
|
biimpd |
⊢ ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) → 𝐵 𝐴 𝐶 ) ) |
14 |
11 13
|
mpcom |
⊢ ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) → 𝐵 𝐴 𝐶 ) |