Metamath Proof Explorer


Theorem elimasni

Description: Membership in an image of a singleton. (Contributed by NM, 5-Aug-2010)

Ref Expression
Assertion elimasni ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) → 𝐵 𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 noel ¬ 𝐶 ∈ ∅
2 snprc ( ¬ 𝐵 ∈ V ↔ { 𝐵 } = ∅ )
3 2 biimpi ( ¬ 𝐵 ∈ V → { 𝐵 } = ∅ )
4 3 imaeq2d ( ¬ 𝐵 ∈ V → ( 𝐴 “ { 𝐵 } ) = ( 𝐴 “ ∅ ) )
5 ima0 ( 𝐴 “ ∅ ) = ∅
6 4 5 eqtrdi ( ¬ 𝐵 ∈ V → ( 𝐴 “ { 𝐵 } ) = ∅ )
7 6 eleq2d ( ¬ 𝐵 ∈ V → ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ↔ 𝐶 ∈ ∅ ) )
8 1 7 mtbiri ( ¬ 𝐵 ∈ V → ¬ 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) )
9 8 con4i ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) → 𝐵 ∈ V )
10 elex ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) → 𝐶 ∈ V )
11 9 10 jca ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) → ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) )
12 elimasng ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ↔ ⟨ 𝐵 , 𝐶 ⟩ ∈ 𝐴 ) )
13 df-br ( 𝐵 𝐴 𝐶 ↔ ⟨ 𝐵 , 𝐶 ⟩ ∈ 𝐴 )
14 12 13 bitr4di ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ↔ 𝐵 𝐴 𝐶 ) )
15 14 biimpd ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) → 𝐵 𝐴 𝐶 ) )
16 11 15 mpcom ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) → 𝐵 𝐴 𝐶 )