| Step | Hyp | Ref | Expression | 
						
							| 1 |  | noel | ⊢ ¬  𝐶  ∈  ∅ | 
						
							| 2 |  | snprc | ⊢ ( ¬  𝐵  ∈  V  ↔  { 𝐵 }  =  ∅ ) | 
						
							| 3 | 2 | biimpi | ⊢ ( ¬  𝐵  ∈  V  →  { 𝐵 }  =  ∅ ) | 
						
							| 4 | 3 | imaeq2d | ⊢ ( ¬  𝐵  ∈  V  →  ( 𝐴  “  { 𝐵 } )  =  ( 𝐴  “  ∅ ) ) | 
						
							| 5 |  | ima0 | ⊢ ( 𝐴  “  ∅ )  =  ∅ | 
						
							| 6 | 4 5 | eqtrdi | ⊢ ( ¬  𝐵  ∈  V  →  ( 𝐴  “  { 𝐵 } )  =  ∅ ) | 
						
							| 7 | 6 | eleq2d | ⊢ ( ¬  𝐵  ∈  V  →  ( 𝐶  ∈  ( 𝐴  “  { 𝐵 } )  ↔  𝐶  ∈  ∅ ) ) | 
						
							| 8 | 1 7 | mtbiri | ⊢ ( ¬  𝐵  ∈  V  →  ¬  𝐶  ∈  ( 𝐴  “  { 𝐵 } ) ) | 
						
							| 9 | 8 | con4i | ⊢ ( 𝐶  ∈  ( 𝐴  “  { 𝐵 } )  →  𝐵  ∈  V ) | 
						
							| 10 |  | elex | ⊢ ( 𝐶  ∈  ( 𝐴  “  { 𝐵 } )  →  𝐶  ∈  V ) | 
						
							| 11 | 9 10 | jca | ⊢ ( 𝐶  ∈  ( 𝐴  “  { 𝐵 } )  →  ( 𝐵  ∈  V  ∧  𝐶  ∈  V ) ) | 
						
							| 12 |  | elimasng1 | ⊢ ( ( 𝐵  ∈  V  ∧  𝐶  ∈  V )  →  ( 𝐶  ∈  ( 𝐴  “  { 𝐵 } )  ↔  𝐵 𝐴 𝐶 ) ) | 
						
							| 13 | 12 | biimpd | ⊢ ( ( 𝐵  ∈  V  ∧  𝐶  ∈  V )  →  ( 𝐶  ∈  ( 𝐴  “  { 𝐵 } )  →  𝐵 𝐴 𝐶 ) ) | 
						
							| 14 | 11 13 | mpcom | ⊢ ( 𝐶  ∈  ( 𝐴  “  { 𝐵 } )  →  𝐵 𝐴 𝐶 ) |