| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elimdelov.1 | 
							⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 𝐹 𝐵 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							elimdelov.2 | 
							⊢ 𝑍  ∈  ( 𝑋 𝐹 𝑌 )  | 
						
						
							| 3 | 
							
								
							 | 
							iftrue | 
							⊢ ( 𝜑  →  if ( 𝜑 ,  𝐶 ,  𝑍 )  =  𝐶 )  | 
						
						
							| 4 | 
							
								
							 | 
							iftrue | 
							⊢ ( 𝜑  →  if ( 𝜑 ,  𝐴 ,  𝑋 )  =  𝐴 )  | 
						
						
							| 5 | 
							
								
							 | 
							iftrue | 
							⊢ ( 𝜑  →  if ( 𝜑 ,  𝐵 ,  𝑌 )  =  𝐵 )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							oveq12d | 
							⊢ ( 𝜑  →  ( if ( 𝜑 ,  𝐴 ,  𝑋 ) 𝐹 if ( 𝜑 ,  𝐵 ,  𝑌 ) )  =  ( 𝐴 𝐹 𝐵 ) )  | 
						
						
							| 7 | 
							
								1 3 6
							 | 
							3eltr4d | 
							⊢ ( 𝜑  →  if ( 𝜑 ,  𝐶 ,  𝑍 )  ∈  ( if ( 𝜑 ,  𝐴 ,  𝑋 ) 𝐹 if ( 𝜑 ,  𝐵 ,  𝑌 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							iffalse | 
							⊢ ( ¬  𝜑  →  if ( 𝜑 ,  𝐶 ,  𝑍 )  =  𝑍 )  | 
						
						
							| 9 | 
							
								8 2
							 | 
							eqeltrdi | 
							⊢ ( ¬  𝜑  →  if ( 𝜑 ,  𝐶 ,  𝑍 )  ∈  ( 𝑋 𝐹 𝑌 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							iffalse | 
							⊢ ( ¬  𝜑  →  if ( 𝜑 ,  𝐴 ,  𝑋 )  =  𝑋 )  | 
						
						
							| 11 | 
							
								
							 | 
							iffalse | 
							⊢ ( ¬  𝜑  →  if ( 𝜑 ,  𝐵 ,  𝑌 )  =  𝑌 )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							oveq12d | 
							⊢ ( ¬  𝜑  →  ( if ( 𝜑 ,  𝐴 ,  𝑋 ) 𝐹 if ( 𝜑 ,  𝐵 ,  𝑌 ) )  =  ( 𝑋 𝐹 𝑌 ) )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							eleqtrrd | 
							⊢ ( ¬  𝜑  →  if ( 𝜑 ,  𝐶 ,  𝑍 )  ∈  ( if ( 𝜑 ,  𝐴 ,  𝑋 ) 𝐹 if ( 𝜑 ,  𝐵 ,  𝑌 ) ) )  | 
						
						
							| 14 | 
							
								7 13
							 | 
							pm2.61i | 
							⊢ if ( 𝜑 ,  𝐶 ,  𝑍 )  ∈  ( if ( 𝜑 ,  𝐴 ,  𝑋 ) 𝐹 if ( 𝜑 ,  𝐵 ,  𝑌 ) )  |