Step |
Hyp |
Ref |
Expression |
1 |
|
elimdelov.1 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 𝐹 𝐵 ) ) |
2 |
|
elimdelov.2 |
⊢ 𝑍 ∈ ( 𝑋 𝐹 𝑌 ) |
3 |
|
iftrue |
⊢ ( 𝜑 → if ( 𝜑 , 𝐶 , 𝑍 ) = 𝐶 ) |
4 |
|
iftrue |
⊢ ( 𝜑 → if ( 𝜑 , 𝐴 , 𝑋 ) = 𝐴 ) |
5 |
|
iftrue |
⊢ ( 𝜑 → if ( 𝜑 , 𝐵 , 𝑌 ) = 𝐵 ) |
6 |
4 5
|
oveq12d |
⊢ ( 𝜑 → ( if ( 𝜑 , 𝐴 , 𝑋 ) 𝐹 if ( 𝜑 , 𝐵 , 𝑌 ) ) = ( 𝐴 𝐹 𝐵 ) ) |
7 |
1 3 6
|
3eltr4d |
⊢ ( 𝜑 → if ( 𝜑 , 𝐶 , 𝑍 ) ∈ ( if ( 𝜑 , 𝐴 , 𝑋 ) 𝐹 if ( 𝜑 , 𝐵 , 𝑌 ) ) ) |
8 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐶 , 𝑍 ) = 𝑍 ) |
9 |
8 2
|
eqeltrdi |
⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐶 , 𝑍 ) ∈ ( 𝑋 𝐹 𝑌 ) ) |
10 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝑋 ) = 𝑋 ) |
11 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐵 , 𝑌 ) = 𝑌 ) |
12 |
10 11
|
oveq12d |
⊢ ( ¬ 𝜑 → ( if ( 𝜑 , 𝐴 , 𝑋 ) 𝐹 if ( 𝜑 , 𝐵 , 𝑌 ) ) = ( 𝑋 𝐹 𝑌 ) ) |
13 |
9 12
|
eleqtrrd |
⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐶 , 𝑍 ) ∈ ( if ( 𝜑 , 𝐴 , 𝑋 ) 𝐹 if ( 𝜑 , 𝐵 , 𝑌 ) ) ) |
14 |
7 13
|
pm2.61i |
⊢ if ( 𝜑 , 𝐶 , 𝑍 ) ∈ ( if ( 𝜑 , 𝐴 , 𝑋 ) 𝐹 if ( 𝜑 , 𝐵 , 𝑌 ) ) |