Description: Eliminate a membership hypothesis for weak deduction theorem, when special case B e. C is provable. (Contributed by NM, 15-May-1999)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elimel.1 | ⊢ 𝐵 ∈ 𝐶 | |
Assertion | elimel | ⊢ if ( 𝐴 ∈ 𝐶 , 𝐴 , 𝐵 ) ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimel.1 | ⊢ 𝐵 ∈ 𝐶 | |
2 | eleq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ 𝐶 , 𝐴 , 𝐵 ) → ( 𝐴 ∈ 𝐶 ↔ if ( 𝐴 ∈ 𝐶 , 𝐴 , 𝐵 ) ∈ 𝐶 ) ) | |
3 | eleq1 | ⊢ ( 𝐵 = if ( 𝐴 ∈ 𝐶 , 𝐴 , 𝐵 ) → ( 𝐵 ∈ 𝐶 ↔ if ( 𝐴 ∈ 𝐶 , 𝐴 , 𝐵 ) ∈ 𝐶 ) ) | |
4 | 2 3 1 | elimhyp | ⊢ if ( 𝐴 ∈ 𝐶 , 𝐴 , 𝐵 ) ∈ 𝐶 |