Metamath Proof Explorer


Theorem elimel

Description: Eliminate a membership hypothesis for weak deduction theorem, when special case B e. C is provable. (Contributed by NM, 15-May-1999)

Ref Expression
Hypothesis elimel.1 𝐵𝐶
Assertion elimel if ( 𝐴𝐶 , 𝐴 , 𝐵 ) ∈ 𝐶

Proof

Step Hyp Ref Expression
1 elimel.1 𝐵𝐶
2 eleq1 ( 𝐴 = if ( 𝐴𝐶 , 𝐴 , 𝐵 ) → ( 𝐴𝐶 ↔ if ( 𝐴𝐶 , 𝐴 , 𝐵 ) ∈ 𝐶 ) )
3 eleq1 ( 𝐵 = if ( 𝐴𝐶 , 𝐴 , 𝐵 ) → ( 𝐵𝐶 ↔ if ( 𝐴𝐶 , 𝐴 , 𝐵 ) ∈ 𝐶 ) )
4 2 3 1 elimhyp if ( 𝐴𝐶 , 𝐴 , 𝐵 ) ∈ 𝐶