Metamath Proof Explorer


Theorem elimf

Description: Eliminate a mapping hypothesis for the weak deduction theorem dedth , when a special case G : A --> B is provable, in order to convert F : A --> B from a hypothesis to an antecedent. (Contributed by NM, 24-Aug-2006)

Ref Expression
Hypothesis elimf.1 𝐺 : 𝐴𝐵
Assertion elimf if ( 𝐹 : 𝐴𝐵 , 𝐹 , 𝐺 ) : 𝐴𝐵

Proof

Step Hyp Ref Expression
1 elimf.1 𝐺 : 𝐴𝐵
2 feq1 ( 𝐹 = if ( 𝐹 : 𝐴𝐵 , 𝐹 , 𝐺 ) → ( 𝐹 : 𝐴𝐵 ↔ if ( 𝐹 : 𝐴𝐵 , 𝐹 , 𝐺 ) : 𝐴𝐵 ) )
3 feq1 ( 𝐺 = if ( 𝐹 : 𝐴𝐵 , 𝐹 , 𝐺 ) → ( 𝐺 : 𝐴𝐵 ↔ if ( 𝐹 : 𝐴𝐵 , 𝐹 , 𝐺 ) : 𝐴𝐵 ) )
4 2 3 1 elimhyp if ( 𝐹 : 𝐴𝐵 , 𝐹 , 𝐺 ) : 𝐴𝐵