Description: Eliminate a mapping hypothesis for the weak deduction theorem dedth , when a special case G : A --> B is provable, in order to convert F : A --> B from a hypothesis to an antecedent. (Contributed by NM, 24-Aug-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elimf.1 | ⊢ 𝐺 : 𝐴 ⟶ 𝐵 | |
Assertion | elimf | ⊢ if ( 𝐹 : 𝐴 ⟶ 𝐵 , 𝐹 , 𝐺 ) : 𝐴 ⟶ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimf.1 | ⊢ 𝐺 : 𝐴 ⟶ 𝐵 | |
2 | feq1 | ⊢ ( 𝐹 = if ( 𝐹 : 𝐴 ⟶ 𝐵 , 𝐹 , 𝐺 ) → ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ if ( 𝐹 : 𝐴 ⟶ 𝐵 , 𝐹 , 𝐺 ) : 𝐴 ⟶ 𝐵 ) ) | |
3 | feq1 | ⊢ ( 𝐺 = if ( 𝐹 : 𝐴 ⟶ 𝐵 , 𝐹 , 𝐺 ) → ( 𝐺 : 𝐴 ⟶ 𝐵 ↔ if ( 𝐹 : 𝐴 ⟶ 𝐵 , 𝐹 , 𝐺 ) : 𝐴 ⟶ 𝐵 ) ) | |
4 | 2 3 1 | elimhyp | ⊢ if ( 𝐹 : 𝐴 ⟶ 𝐵 , 𝐹 , 𝐺 ) : 𝐴 ⟶ 𝐵 |