Metamath Proof Explorer


Theorem elimhyp2v

Description: Eliminate a hypothesis containing 2 class variables. (Contributed by NM, 14-Aug-1999)

Ref Expression
Hypotheses elimhyp2v.1 ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐶 ) → ( 𝜑𝜒 ) )
elimhyp2v.2 ( 𝐵 = if ( 𝜑 , 𝐵 , 𝐷 ) → ( 𝜒𝜃 ) )
elimhyp2v.3 ( 𝐶 = if ( 𝜑 , 𝐴 , 𝐶 ) → ( 𝜏𝜂 ) )
elimhyp2v.4 ( 𝐷 = if ( 𝜑 , 𝐵 , 𝐷 ) → ( 𝜂𝜃 ) )
elimhyp2v.5 𝜏
Assertion elimhyp2v 𝜃

Proof

Step Hyp Ref Expression
1 elimhyp2v.1 ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐶 ) → ( 𝜑𝜒 ) )
2 elimhyp2v.2 ( 𝐵 = if ( 𝜑 , 𝐵 , 𝐷 ) → ( 𝜒𝜃 ) )
3 elimhyp2v.3 ( 𝐶 = if ( 𝜑 , 𝐴 , 𝐶 ) → ( 𝜏𝜂 ) )
4 elimhyp2v.4 ( 𝐷 = if ( 𝜑 , 𝐵 , 𝐷 ) → ( 𝜂𝜃 ) )
5 elimhyp2v.5 𝜏
6 iftrue ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐶 ) = 𝐴 )
7 6 eqcomd ( 𝜑𝐴 = if ( 𝜑 , 𝐴 , 𝐶 ) )
8 7 1 syl ( 𝜑 → ( 𝜑𝜒 ) )
9 iftrue ( 𝜑 → if ( 𝜑 , 𝐵 , 𝐷 ) = 𝐵 )
10 9 eqcomd ( 𝜑𝐵 = if ( 𝜑 , 𝐵 , 𝐷 ) )
11 10 2 syl ( 𝜑 → ( 𝜒𝜃 ) )
12 8 11 bitrd ( 𝜑 → ( 𝜑𝜃 ) )
13 12 ibi ( 𝜑𝜃 )
14 iffalse ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐶 ) = 𝐶 )
15 14 eqcomd ( ¬ 𝜑𝐶 = if ( 𝜑 , 𝐴 , 𝐶 ) )
16 15 3 syl ( ¬ 𝜑 → ( 𝜏𝜂 ) )
17 iffalse ( ¬ 𝜑 → if ( 𝜑 , 𝐵 , 𝐷 ) = 𝐷 )
18 17 eqcomd ( ¬ 𝜑𝐷 = if ( 𝜑 , 𝐵 , 𝐷 ) )
19 18 4 syl ( ¬ 𝜑 → ( 𝜂𝜃 ) )
20 16 19 bitrd ( ¬ 𝜑 → ( 𝜏𝜃 ) )
21 5 20 mpbii ( ¬ 𝜑𝜃 )
22 13 21 pm2.61i 𝜃