| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elimhyp2v.1 |
⊢ ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐶 ) → ( 𝜑 ↔ 𝜒 ) ) |
| 2 |
|
elimhyp2v.2 |
⊢ ( 𝐵 = if ( 𝜑 , 𝐵 , 𝐷 ) → ( 𝜒 ↔ 𝜃 ) ) |
| 3 |
|
elimhyp2v.3 |
⊢ ( 𝐶 = if ( 𝜑 , 𝐴 , 𝐶 ) → ( 𝜏 ↔ 𝜂 ) ) |
| 4 |
|
elimhyp2v.4 |
⊢ ( 𝐷 = if ( 𝜑 , 𝐵 , 𝐷 ) → ( 𝜂 ↔ 𝜃 ) ) |
| 5 |
|
elimhyp2v.5 |
⊢ 𝜏 |
| 6 |
|
iftrue |
⊢ ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐶 ) = 𝐴 ) |
| 7 |
6
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = if ( 𝜑 , 𝐴 , 𝐶 ) ) |
| 8 |
7 1
|
syl |
⊢ ( 𝜑 → ( 𝜑 ↔ 𝜒 ) ) |
| 9 |
|
iftrue |
⊢ ( 𝜑 → if ( 𝜑 , 𝐵 , 𝐷 ) = 𝐵 ) |
| 10 |
9
|
eqcomd |
⊢ ( 𝜑 → 𝐵 = if ( 𝜑 , 𝐵 , 𝐷 ) ) |
| 11 |
10 2
|
syl |
⊢ ( 𝜑 → ( 𝜒 ↔ 𝜃 ) ) |
| 12 |
8 11
|
bitrd |
⊢ ( 𝜑 → ( 𝜑 ↔ 𝜃 ) ) |
| 13 |
12
|
ibi |
⊢ ( 𝜑 → 𝜃 ) |
| 14 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐶 ) = 𝐶 ) |
| 15 |
14
|
eqcomd |
⊢ ( ¬ 𝜑 → 𝐶 = if ( 𝜑 , 𝐴 , 𝐶 ) ) |
| 16 |
15 3
|
syl |
⊢ ( ¬ 𝜑 → ( 𝜏 ↔ 𝜂 ) ) |
| 17 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐵 , 𝐷 ) = 𝐷 ) |
| 18 |
17
|
eqcomd |
⊢ ( ¬ 𝜑 → 𝐷 = if ( 𝜑 , 𝐵 , 𝐷 ) ) |
| 19 |
18 4
|
syl |
⊢ ( ¬ 𝜑 → ( 𝜂 ↔ 𝜃 ) ) |
| 20 |
16 19
|
bitrd |
⊢ ( ¬ 𝜑 → ( 𝜏 ↔ 𝜃 ) ) |
| 21 |
5 20
|
mpbii |
⊢ ( ¬ 𝜑 → 𝜃 ) |
| 22 |
13 21
|
pm2.61i |
⊢ 𝜃 |