Metamath Proof Explorer


Theorem elimhyp3v

Description: Eliminate a hypothesis containing 3 class variables. (Contributed by NM, 14-Aug-1999)

Ref Expression
Hypotheses elimhyp3v.1 ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( 𝜑𝜒 ) )
elimhyp3v.2 ( 𝐵 = if ( 𝜑 , 𝐵 , 𝑅 ) → ( 𝜒𝜃 ) )
elimhyp3v.3 ( 𝐶 = if ( 𝜑 , 𝐶 , 𝑆 ) → ( 𝜃𝜏 ) )
elimhyp3v.4 ( 𝐷 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( 𝜂𝜁 ) )
elimhyp3v.5 ( 𝑅 = if ( 𝜑 , 𝐵 , 𝑅 ) → ( 𝜁𝜎 ) )
elimhyp3v.6 ( 𝑆 = if ( 𝜑 , 𝐶 , 𝑆 ) → ( 𝜎𝜏 ) )
elimhyp3v.7 𝜂
Assertion elimhyp3v 𝜏

Proof

Step Hyp Ref Expression
1 elimhyp3v.1 ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( 𝜑𝜒 ) )
2 elimhyp3v.2 ( 𝐵 = if ( 𝜑 , 𝐵 , 𝑅 ) → ( 𝜒𝜃 ) )
3 elimhyp3v.3 ( 𝐶 = if ( 𝜑 , 𝐶 , 𝑆 ) → ( 𝜃𝜏 ) )
4 elimhyp3v.4 ( 𝐷 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( 𝜂𝜁 ) )
5 elimhyp3v.5 ( 𝑅 = if ( 𝜑 , 𝐵 , 𝑅 ) → ( 𝜁𝜎 ) )
6 elimhyp3v.6 ( 𝑆 = if ( 𝜑 , 𝐶 , 𝑆 ) → ( 𝜎𝜏 ) )
7 elimhyp3v.7 𝜂
8 iftrue ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐷 ) = 𝐴 )
9 8 eqcomd ( 𝜑𝐴 = if ( 𝜑 , 𝐴 , 𝐷 ) )
10 9 1 syl ( 𝜑 → ( 𝜑𝜒 ) )
11 iftrue ( 𝜑 → if ( 𝜑 , 𝐵 , 𝑅 ) = 𝐵 )
12 11 eqcomd ( 𝜑𝐵 = if ( 𝜑 , 𝐵 , 𝑅 ) )
13 12 2 syl ( 𝜑 → ( 𝜒𝜃 ) )
14 iftrue ( 𝜑 → if ( 𝜑 , 𝐶 , 𝑆 ) = 𝐶 )
15 14 eqcomd ( 𝜑𝐶 = if ( 𝜑 , 𝐶 , 𝑆 ) )
16 15 3 syl ( 𝜑 → ( 𝜃𝜏 ) )
17 10 13 16 3bitrd ( 𝜑 → ( 𝜑𝜏 ) )
18 17 ibi ( 𝜑𝜏 )
19 iffalse ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐷 ) = 𝐷 )
20 19 eqcomd ( ¬ 𝜑𝐷 = if ( 𝜑 , 𝐴 , 𝐷 ) )
21 20 4 syl ( ¬ 𝜑 → ( 𝜂𝜁 ) )
22 iffalse ( ¬ 𝜑 → if ( 𝜑 , 𝐵 , 𝑅 ) = 𝑅 )
23 22 eqcomd ( ¬ 𝜑𝑅 = if ( 𝜑 , 𝐵 , 𝑅 ) )
24 23 5 syl ( ¬ 𝜑 → ( 𝜁𝜎 ) )
25 iffalse ( ¬ 𝜑 → if ( 𝜑 , 𝐶 , 𝑆 ) = 𝑆 )
26 25 eqcomd ( ¬ 𝜑𝑆 = if ( 𝜑 , 𝐶 , 𝑆 ) )
27 26 6 syl ( ¬ 𝜑 → ( 𝜎𝜏 ) )
28 21 24 27 3bitrd ( ¬ 𝜑 → ( 𝜂𝜏 ) )
29 7 28 mpbii ( ¬ 𝜑𝜏 )
30 18 29 pm2.61i 𝜏