| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elimhyp3v.1 | ⊢ ( 𝐴  =  if ( 𝜑 ,  𝐴 ,  𝐷 )  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 2 |  | elimhyp3v.2 | ⊢ ( 𝐵  =  if ( 𝜑 ,  𝐵 ,  𝑅 )  →  ( 𝜒  ↔  𝜃 ) ) | 
						
							| 3 |  | elimhyp3v.3 | ⊢ ( 𝐶  =  if ( 𝜑 ,  𝐶 ,  𝑆 )  →  ( 𝜃  ↔  𝜏 ) ) | 
						
							| 4 |  | elimhyp3v.4 | ⊢ ( 𝐷  =  if ( 𝜑 ,  𝐴 ,  𝐷 )  →  ( 𝜂  ↔  𝜁 ) ) | 
						
							| 5 |  | elimhyp3v.5 | ⊢ ( 𝑅  =  if ( 𝜑 ,  𝐵 ,  𝑅 )  →  ( 𝜁  ↔  𝜎 ) ) | 
						
							| 6 |  | elimhyp3v.6 | ⊢ ( 𝑆  =  if ( 𝜑 ,  𝐶 ,  𝑆 )  →  ( 𝜎  ↔  𝜏 ) ) | 
						
							| 7 |  | elimhyp3v.7 | ⊢ 𝜂 | 
						
							| 8 |  | iftrue | ⊢ ( 𝜑  →  if ( 𝜑 ,  𝐴 ,  𝐷 )  =  𝐴 ) | 
						
							| 9 | 8 | eqcomd | ⊢ ( 𝜑  →  𝐴  =  if ( 𝜑 ,  𝐴 ,  𝐷 ) ) | 
						
							| 10 | 9 1 | syl | ⊢ ( 𝜑  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 11 |  | iftrue | ⊢ ( 𝜑  →  if ( 𝜑 ,  𝐵 ,  𝑅 )  =  𝐵 ) | 
						
							| 12 | 11 | eqcomd | ⊢ ( 𝜑  →  𝐵  =  if ( 𝜑 ,  𝐵 ,  𝑅 ) ) | 
						
							| 13 | 12 2 | syl | ⊢ ( 𝜑  →  ( 𝜒  ↔  𝜃 ) ) | 
						
							| 14 |  | iftrue | ⊢ ( 𝜑  →  if ( 𝜑 ,  𝐶 ,  𝑆 )  =  𝐶 ) | 
						
							| 15 | 14 | eqcomd | ⊢ ( 𝜑  →  𝐶  =  if ( 𝜑 ,  𝐶 ,  𝑆 ) ) | 
						
							| 16 | 15 3 | syl | ⊢ ( 𝜑  →  ( 𝜃  ↔  𝜏 ) ) | 
						
							| 17 | 10 13 16 | 3bitrd | ⊢ ( 𝜑  →  ( 𝜑  ↔  𝜏 ) ) | 
						
							| 18 | 17 | ibi | ⊢ ( 𝜑  →  𝜏 ) | 
						
							| 19 |  | iffalse | ⊢ ( ¬  𝜑  →  if ( 𝜑 ,  𝐴 ,  𝐷 )  =  𝐷 ) | 
						
							| 20 | 19 | eqcomd | ⊢ ( ¬  𝜑  →  𝐷  =  if ( 𝜑 ,  𝐴 ,  𝐷 ) ) | 
						
							| 21 | 20 4 | syl | ⊢ ( ¬  𝜑  →  ( 𝜂  ↔  𝜁 ) ) | 
						
							| 22 |  | iffalse | ⊢ ( ¬  𝜑  →  if ( 𝜑 ,  𝐵 ,  𝑅 )  =  𝑅 ) | 
						
							| 23 | 22 | eqcomd | ⊢ ( ¬  𝜑  →  𝑅  =  if ( 𝜑 ,  𝐵 ,  𝑅 ) ) | 
						
							| 24 | 23 5 | syl | ⊢ ( ¬  𝜑  →  ( 𝜁  ↔  𝜎 ) ) | 
						
							| 25 |  | iffalse | ⊢ ( ¬  𝜑  →  if ( 𝜑 ,  𝐶 ,  𝑆 )  =  𝑆 ) | 
						
							| 26 | 25 | eqcomd | ⊢ ( ¬  𝜑  →  𝑆  =  if ( 𝜑 ,  𝐶 ,  𝑆 ) ) | 
						
							| 27 | 26 6 | syl | ⊢ ( ¬  𝜑  →  ( 𝜎  ↔  𝜏 ) ) | 
						
							| 28 | 21 24 27 | 3bitrd | ⊢ ( ¬  𝜑  →  ( 𝜂  ↔  𝜏 ) ) | 
						
							| 29 | 7 28 | mpbii | ⊢ ( ¬  𝜑  →  𝜏 ) | 
						
							| 30 | 18 29 | pm2.61i | ⊢ 𝜏 |