Metamath Proof Explorer


Theorem elimhyp4v

Description: Eliminate a hypothesis containing 4 class variables (for use with the weak deduction theorem dedth ). (Contributed by NM, 16-Apr-2005)

Ref Expression
Hypotheses elimhyp4v.1 ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( 𝜑𝜒 ) )
elimhyp4v.2 ( 𝐵 = if ( 𝜑 , 𝐵 , 𝑅 ) → ( 𝜒𝜃 ) )
elimhyp4v.3 ( 𝐶 = if ( 𝜑 , 𝐶 , 𝑆 ) → ( 𝜃𝜏 ) )
elimhyp4v.4 ( 𝐹 = if ( 𝜑 , 𝐹 , 𝐺 ) → ( 𝜏𝜓 ) )
elimhyp4v.5 ( 𝐷 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( 𝜂𝜁 ) )
elimhyp4v.6 ( 𝑅 = if ( 𝜑 , 𝐵 , 𝑅 ) → ( 𝜁𝜎 ) )
elimhyp4v.7 ( 𝑆 = if ( 𝜑 , 𝐶 , 𝑆 ) → ( 𝜎𝜌 ) )
elimhyp4v.8 ( 𝐺 = if ( 𝜑 , 𝐹 , 𝐺 ) → ( 𝜌𝜓 ) )
elimhyp4v.9 𝜂
Assertion elimhyp4v 𝜓

Proof

Step Hyp Ref Expression
1 elimhyp4v.1 ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( 𝜑𝜒 ) )
2 elimhyp4v.2 ( 𝐵 = if ( 𝜑 , 𝐵 , 𝑅 ) → ( 𝜒𝜃 ) )
3 elimhyp4v.3 ( 𝐶 = if ( 𝜑 , 𝐶 , 𝑆 ) → ( 𝜃𝜏 ) )
4 elimhyp4v.4 ( 𝐹 = if ( 𝜑 , 𝐹 , 𝐺 ) → ( 𝜏𝜓 ) )
5 elimhyp4v.5 ( 𝐷 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( 𝜂𝜁 ) )
6 elimhyp4v.6 ( 𝑅 = if ( 𝜑 , 𝐵 , 𝑅 ) → ( 𝜁𝜎 ) )
7 elimhyp4v.7 ( 𝑆 = if ( 𝜑 , 𝐶 , 𝑆 ) → ( 𝜎𝜌 ) )
8 elimhyp4v.8 ( 𝐺 = if ( 𝜑 , 𝐹 , 𝐺 ) → ( 𝜌𝜓 ) )
9 elimhyp4v.9 𝜂
10 iftrue ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐷 ) = 𝐴 )
11 10 eqcomd ( 𝜑𝐴 = if ( 𝜑 , 𝐴 , 𝐷 ) )
12 11 1 syl ( 𝜑 → ( 𝜑𝜒 ) )
13 iftrue ( 𝜑 → if ( 𝜑 , 𝐵 , 𝑅 ) = 𝐵 )
14 13 eqcomd ( 𝜑𝐵 = if ( 𝜑 , 𝐵 , 𝑅 ) )
15 14 2 syl ( 𝜑 → ( 𝜒𝜃 ) )
16 12 15 bitrd ( 𝜑 → ( 𝜑𝜃 ) )
17 iftrue ( 𝜑 → if ( 𝜑 , 𝐶 , 𝑆 ) = 𝐶 )
18 17 eqcomd ( 𝜑𝐶 = if ( 𝜑 , 𝐶 , 𝑆 ) )
19 18 3 syl ( 𝜑 → ( 𝜃𝜏 ) )
20 iftrue ( 𝜑 → if ( 𝜑 , 𝐹 , 𝐺 ) = 𝐹 )
21 20 eqcomd ( 𝜑𝐹 = if ( 𝜑 , 𝐹 , 𝐺 ) )
22 21 4 syl ( 𝜑 → ( 𝜏𝜓 ) )
23 16 19 22 3bitrd ( 𝜑 → ( 𝜑𝜓 ) )
24 23 ibi ( 𝜑𝜓 )
25 iffalse ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐷 ) = 𝐷 )
26 25 eqcomd ( ¬ 𝜑𝐷 = if ( 𝜑 , 𝐴 , 𝐷 ) )
27 26 5 syl ( ¬ 𝜑 → ( 𝜂𝜁 ) )
28 iffalse ( ¬ 𝜑 → if ( 𝜑 , 𝐵 , 𝑅 ) = 𝑅 )
29 28 eqcomd ( ¬ 𝜑𝑅 = if ( 𝜑 , 𝐵 , 𝑅 ) )
30 29 6 syl ( ¬ 𝜑 → ( 𝜁𝜎 ) )
31 27 30 bitrd ( ¬ 𝜑 → ( 𝜂𝜎 ) )
32 iffalse ( ¬ 𝜑 → if ( 𝜑 , 𝐶 , 𝑆 ) = 𝑆 )
33 32 eqcomd ( ¬ 𝜑𝑆 = if ( 𝜑 , 𝐶 , 𝑆 ) )
34 33 7 syl ( ¬ 𝜑 → ( 𝜎𝜌 ) )
35 iffalse ( ¬ 𝜑 → if ( 𝜑 , 𝐹 , 𝐺 ) = 𝐺 )
36 35 eqcomd ( ¬ 𝜑𝐺 = if ( 𝜑 , 𝐹 , 𝐺 ) )
37 36 8 syl ( ¬ 𝜑 → ( 𝜌𝜓 ) )
38 31 34 37 3bitrd ( ¬ 𝜑 → ( 𝜂𝜓 ) )
39 9 38 mpbii ( ¬ 𝜑𝜓 )
40 24 39 pm2.61i 𝜓