Step |
Hyp |
Ref |
Expression |
1 |
|
elimhyp4v.1 |
⊢ ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( 𝜑 ↔ 𝜒 ) ) |
2 |
|
elimhyp4v.2 |
⊢ ( 𝐵 = if ( 𝜑 , 𝐵 , 𝑅 ) → ( 𝜒 ↔ 𝜃 ) ) |
3 |
|
elimhyp4v.3 |
⊢ ( 𝐶 = if ( 𝜑 , 𝐶 , 𝑆 ) → ( 𝜃 ↔ 𝜏 ) ) |
4 |
|
elimhyp4v.4 |
⊢ ( 𝐹 = if ( 𝜑 , 𝐹 , 𝐺 ) → ( 𝜏 ↔ 𝜓 ) ) |
5 |
|
elimhyp4v.5 |
⊢ ( 𝐷 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( 𝜂 ↔ 𝜁 ) ) |
6 |
|
elimhyp4v.6 |
⊢ ( 𝑅 = if ( 𝜑 , 𝐵 , 𝑅 ) → ( 𝜁 ↔ 𝜎 ) ) |
7 |
|
elimhyp4v.7 |
⊢ ( 𝑆 = if ( 𝜑 , 𝐶 , 𝑆 ) → ( 𝜎 ↔ 𝜌 ) ) |
8 |
|
elimhyp4v.8 |
⊢ ( 𝐺 = if ( 𝜑 , 𝐹 , 𝐺 ) → ( 𝜌 ↔ 𝜓 ) ) |
9 |
|
elimhyp4v.9 |
⊢ 𝜂 |
10 |
|
iftrue |
⊢ ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐷 ) = 𝐴 ) |
11 |
10
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = if ( 𝜑 , 𝐴 , 𝐷 ) ) |
12 |
11 1
|
syl |
⊢ ( 𝜑 → ( 𝜑 ↔ 𝜒 ) ) |
13 |
|
iftrue |
⊢ ( 𝜑 → if ( 𝜑 , 𝐵 , 𝑅 ) = 𝐵 ) |
14 |
13
|
eqcomd |
⊢ ( 𝜑 → 𝐵 = if ( 𝜑 , 𝐵 , 𝑅 ) ) |
15 |
14 2
|
syl |
⊢ ( 𝜑 → ( 𝜒 ↔ 𝜃 ) ) |
16 |
12 15
|
bitrd |
⊢ ( 𝜑 → ( 𝜑 ↔ 𝜃 ) ) |
17 |
|
iftrue |
⊢ ( 𝜑 → if ( 𝜑 , 𝐶 , 𝑆 ) = 𝐶 ) |
18 |
17
|
eqcomd |
⊢ ( 𝜑 → 𝐶 = if ( 𝜑 , 𝐶 , 𝑆 ) ) |
19 |
18 3
|
syl |
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) ) |
20 |
|
iftrue |
⊢ ( 𝜑 → if ( 𝜑 , 𝐹 , 𝐺 ) = 𝐹 ) |
21 |
20
|
eqcomd |
⊢ ( 𝜑 → 𝐹 = if ( 𝜑 , 𝐹 , 𝐺 ) ) |
22 |
21 4
|
syl |
⊢ ( 𝜑 → ( 𝜏 ↔ 𝜓 ) ) |
23 |
16 19 22
|
3bitrd |
⊢ ( 𝜑 → ( 𝜑 ↔ 𝜓 ) ) |
24 |
23
|
ibi |
⊢ ( 𝜑 → 𝜓 ) |
25 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐷 ) = 𝐷 ) |
26 |
25
|
eqcomd |
⊢ ( ¬ 𝜑 → 𝐷 = if ( 𝜑 , 𝐴 , 𝐷 ) ) |
27 |
26 5
|
syl |
⊢ ( ¬ 𝜑 → ( 𝜂 ↔ 𝜁 ) ) |
28 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐵 , 𝑅 ) = 𝑅 ) |
29 |
28
|
eqcomd |
⊢ ( ¬ 𝜑 → 𝑅 = if ( 𝜑 , 𝐵 , 𝑅 ) ) |
30 |
29 6
|
syl |
⊢ ( ¬ 𝜑 → ( 𝜁 ↔ 𝜎 ) ) |
31 |
27 30
|
bitrd |
⊢ ( ¬ 𝜑 → ( 𝜂 ↔ 𝜎 ) ) |
32 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐶 , 𝑆 ) = 𝑆 ) |
33 |
32
|
eqcomd |
⊢ ( ¬ 𝜑 → 𝑆 = if ( 𝜑 , 𝐶 , 𝑆 ) ) |
34 |
33 7
|
syl |
⊢ ( ¬ 𝜑 → ( 𝜎 ↔ 𝜌 ) ) |
35 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐹 , 𝐺 ) = 𝐺 ) |
36 |
35
|
eqcomd |
⊢ ( ¬ 𝜑 → 𝐺 = if ( 𝜑 , 𝐹 , 𝐺 ) ) |
37 |
36 8
|
syl |
⊢ ( ¬ 𝜑 → ( 𝜌 ↔ 𝜓 ) ) |
38 |
31 34 37
|
3bitrd |
⊢ ( ¬ 𝜑 → ( 𝜂 ↔ 𝜓 ) ) |
39 |
9 38
|
mpbii |
⊢ ( ¬ 𝜑 → 𝜓 ) |
40 |
24 39
|
pm2.61i |
⊢ 𝜓 |