Description: Elimination of a conditional operator contained in a wff ps . (Contributed by NM, 15-Feb-2005) (Proof shortened by NM, 25-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elimif.1 | ⊢ ( if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) | |
| elimif.2 | ⊢ ( if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 → ( 𝜓 ↔ 𝜃 ) ) | ||
| Assertion | elimif | ⊢ ( 𝜓 ↔ ( ( 𝜑 ∧ 𝜒 ) ∨ ( ¬ 𝜑 ∧ 𝜃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimif.1 | ⊢ ( if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | elimif.2 | ⊢ ( if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 → ( 𝜓 ↔ 𝜃 ) ) | |
| 3 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) | |
| 4 | 3 1 | syl | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
| 5 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) | |
| 6 | 5 2 | syl | ⊢ ( ¬ 𝜑 → ( 𝜓 ↔ 𝜃 ) ) |
| 7 | 4 6 | cases | ⊢ ( 𝜓 ↔ ( ( 𝜑 ∧ 𝜒 ) ∨ ( ¬ 𝜑 ∧ 𝜃 ) ) ) |