Description: Hypothesis elimination lemma for normed complex vector spaces to assist weak deduction theorem. (Contributed by NM, 16-May-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elimnv.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
elimnv.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | ||
elimnv.9 | ⊢ 𝑈 ∈ NrmCVec | ||
Assertion | elimnv | ⊢ if ( 𝐴 ∈ 𝑋 , 𝐴 , 𝑍 ) ∈ 𝑋 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimnv.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
2 | elimnv.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | |
3 | elimnv.9 | ⊢ 𝑈 ∈ NrmCVec | |
4 | 1 2 | nvzcl | ⊢ ( 𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋 ) |
5 | 3 4 | ax-mp | ⊢ 𝑍 ∈ 𝑋 |
6 | 5 | elimel | ⊢ if ( 𝐴 ∈ 𝑋 , 𝐴 , 𝑍 ) ∈ 𝑋 |