Metamath Proof Explorer


Theorem elimnv

Description: Hypothesis elimination lemma for normed complex vector spaces to assist weak deduction theorem. (Contributed by NM, 16-May-2007) (New usage is discouraged.)

Ref Expression
Hypotheses elimnv.1 𝑋 = ( BaseSet ‘ 𝑈 )
elimnv.5 𝑍 = ( 0vec𝑈 )
elimnv.9 𝑈 ∈ NrmCVec
Assertion elimnv if ( 𝐴𝑋 , 𝐴 , 𝑍 ) ∈ 𝑋

Proof

Step Hyp Ref Expression
1 elimnv.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 elimnv.5 𝑍 = ( 0vec𝑈 )
3 elimnv.9 𝑈 ∈ NrmCVec
4 1 2 nvzcl ( 𝑈 ∈ NrmCVec → 𝑍𝑋 )
5 3 4 ax-mp 𝑍𝑋
6 5 elimel if ( 𝐴𝑋 , 𝐴 , 𝑍 ) ∈ 𝑋