Metamath Proof Explorer


Theorem elimph

Description: Hypothesis elimination lemma for complex inner product spaces to assist weak deduction theorem. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses elimph.1 𝑋 = ( BaseSet ‘ 𝑈 )
elimph.5 𝑍 = ( 0vec𝑈 )
elimph.6 𝑈 ∈ CPreHilOLD
Assertion elimph if ( 𝐴𝑋 , 𝐴 , 𝑍 ) ∈ 𝑋

Proof

Step Hyp Ref Expression
1 elimph.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 elimph.5 𝑍 = ( 0vec𝑈 )
3 elimph.6 𝑈 ∈ CPreHilOLD
4 3 phnvi 𝑈 ∈ NrmCVec
5 1 2 4 elimnv if ( 𝐴𝑋 , 𝐴 , 𝑍 ) ∈ 𝑋