Metamath Proof Explorer


Theorem elimphu

Description: Hypothesis elimination lemma for complex inner product spaces to assist weak deduction theorem. (Contributed by NM, 6-May-2007) (New usage is discouraged.)

Ref Expression
Assertion elimphu if ( 𝑈 ∈ CPreHilOLD , 𝑈 , ⟨ ⟨ + , · ⟩ , abs ⟩ ) ∈ CPreHilOLD

Proof

Step Hyp Ref Expression
1 eqid ⟨ ⟨ + , · ⟩ , abs ⟩ = ⟨ ⟨ + , · ⟩ , abs ⟩
2 1 cncph ⟨ ⟨ + , · ⟩ , abs ⟩ ∈ CPreHilOLD
3 2 elimel if ( 𝑈 ∈ CPreHilOLD , 𝑈 , ⟨ ⟨ + , · ⟩ , abs ⟩ ) ∈ CPreHilOLD