Description: Membership in a class defined as a ternary intersection. (Contributed by Stefan O'Rear, 29-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elin3.x | ⊢ 𝑋 = ( ( 𝐵 ∩ 𝐶 ) ∩ 𝐷 ) | |
Assertion | elin3 | ⊢ ( 𝐴 ∈ 𝑋 ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin3.x | ⊢ 𝑋 = ( ( 𝐵 ∩ 𝐶 ) ∩ 𝐷 ) | |
2 | elin | ⊢ ( 𝐴 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) | |
3 | 2 | anbi1i | ⊢ ( ( 𝐴 ∈ ( 𝐵 ∩ 𝐶 ) ∧ 𝐴 ∈ 𝐷 ) ↔ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ∧ 𝐴 ∈ 𝐷 ) ) |
4 | 1 | elin2 | ⊢ ( 𝐴 ∈ 𝑋 ↔ ( 𝐴 ∈ ( 𝐵 ∩ 𝐶 ) ∧ 𝐴 ∈ 𝐷 ) ) |
5 | df-3an | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷 ) ↔ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ∧ 𝐴 ∈ 𝐷 ) ) | |
6 | 3 4 5 | 3bitr4i | ⊢ ( 𝐴 ∈ 𝑋 ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷 ) ) |