Metamath Proof Explorer


Theorem elin3

Description: Membership in a class defined as a ternary intersection. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypothesis elin3.x 𝑋 = ( ( 𝐵𝐶 ) ∩ 𝐷 )
Assertion elin3 ( 𝐴𝑋 ↔ ( 𝐴𝐵𝐴𝐶𝐴𝐷 ) )

Proof

Step Hyp Ref Expression
1 elin3.x 𝑋 = ( ( 𝐵𝐶 ) ∩ 𝐷 )
2 elin ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵𝐴𝐶 ) )
3 2 anbi1i ( ( 𝐴 ∈ ( 𝐵𝐶 ) ∧ 𝐴𝐷 ) ↔ ( ( 𝐴𝐵𝐴𝐶 ) ∧ 𝐴𝐷 ) )
4 1 elin2 ( 𝐴𝑋 ↔ ( 𝐴 ∈ ( 𝐵𝐶 ) ∧ 𝐴𝐷 ) )
5 df-3an ( ( 𝐴𝐵𝐴𝐶𝐴𝐷 ) ↔ ( ( 𝐴𝐵𝐴𝐶 ) ∧ 𝐴𝐷 ) )
6 3 4 5 3bitr4i ( 𝐴𝑋 ↔ ( 𝐴𝐵𝐴𝐶𝐴𝐷 ) )