Metamath Proof Explorer
Description: Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)
|
|
Ref |
Expression |
|
Hypotheses |
elind.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
|
|
elind.2 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
Assertion |
elind |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 ∩ 𝐵 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elind.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 2 |
|
elind.2 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 3 |
|
elin |
⊢ ( 𝑋 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) |
| 4 |
1 2 3
|
sylanbrc |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 ∩ 𝐵 ) ) |