Metamath Proof Explorer


Theorem elinel2

Description: Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion elinel2 ( 𝐴 ∈ ( 𝐵𝐶 ) → 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 elin ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵𝐴𝐶 ) )
2 1 simprbi ( 𝐴 ∈ ( 𝐵𝐶 ) → 𝐴𝐶 )