Metamath Proof Explorer
Description: Membership in an intersection of two classes. (Contributed by Glauco
Siliprandi, 17-Aug-2020)
|
|
Ref |
Expression |
|
Hypotheses |
elini.1 |
⊢ 𝐴 ∈ 𝐵 |
|
|
elini.2 |
⊢ 𝐴 ∈ 𝐶 |
|
Assertion |
elini |
⊢ 𝐴 ∈ ( 𝐵 ∩ 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
elini.1 |
⊢ 𝐴 ∈ 𝐵 |
2 |
|
elini.2 |
⊢ 𝐴 ∈ 𝐶 |
3 |
|
elin |
⊢ ( 𝐴 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) |
4 |
1 2 3
|
mpbir2an |
⊢ 𝐴 ∈ ( 𝐵 ∩ 𝐶 ) |