Metamath Proof Explorer


Theorem elinsn

Description: If the intersection of two classes is a (proper) singleton, then the singleton element is a member of both classes. (Contributed by AV, 30-Dec-2021)

Ref Expression
Assertion elinsn ( ( 𝐴𝑉 ∧ ( 𝐵𝐶 ) = { 𝐴 } ) → ( 𝐴𝐵𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 snidg ( 𝐴𝑉𝐴 ∈ { 𝐴 } )
2 eleq2 ( ( 𝐵𝐶 ) = { 𝐴 } → ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ 𝐴 ∈ { 𝐴 } ) )
3 elin ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵𝐴𝐶 ) )
4 3 biimpi ( 𝐴 ∈ ( 𝐵𝐶 ) → ( 𝐴𝐵𝐴𝐶 ) )
5 2 4 syl6bir ( ( 𝐵𝐶 ) = { 𝐴 } → ( 𝐴 ∈ { 𝐴 } → ( 𝐴𝐵𝐴𝐶 ) ) )
6 1 5 mpan9 ( ( 𝐴𝑉 ∧ ( 𝐵𝐶 ) = { 𝐴 } ) → ( 𝐴𝐵𝐴𝐶 ) )