Description: If the intersection of two classes is a (proper) singleton, then the singleton element is a member of both classes. (Contributed by AV, 30-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elinsn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∩ 𝐶 ) = { 𝐴 } ) → ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snidg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 } ) | |
| 2 | eleq2 | ⊢ ( ( 𝐵 ∩ 𝐶 ) = { 𝐴 } → ( 𝐴 ∈ ( 𝐵 ∩ 𝐶 ) ↔ 𝐴 ∈ { 𝐴 } ) ) | |
| 3 | elin | ⊢ ( 𝐴 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) | |
| 4 | 3 | biimpi | ⊢ ( 𝐴 ∈ ( 𝐵 ∩ 𝐶 ) → ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) |
| 5 | 2 4 | biimtrrdi | ⊢ ( ( 𝐵 ∩ 𝐶 ) = { 𝐴 } → ( 𝐴 ∈ { 𝐴 } → ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) ) |
| 6 | 1 5 | mpan9 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∩ 𝐶 ) = { 𝐴 } ) → ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) |