Description: Membership in class intersection. (Contributed by NM, 21-May-1994)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elint.1 | ⊢ 𝐴 ∈ V | |
Assertion | elint | ⊢ ( 𝐴 ∈ ∩ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elint.1 | ⊢ 𝐴 ∈ V | |
2 | eleq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥 ) ) | |
3 | 2 | imbi2d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 ∈ 𝐵 → 𝑦 ∈ 𝑥 ) ↔ ( 𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥 ) ) ) |
4 | 3 | albidv | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥 ) ) ) |
5 | df-int | ⊢ ∩ 𝐵 = { 𝑦 ∣ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝑦 ∈ 𝑥 ) } | |
6 | 4 5 | elab2g | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ ∩ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥 ) ) ) |
7 | 1 6 | ax-mp | ⊢ ( 𝐴 ∈ ∩ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥 ) ) |