Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elint2.1 | ⊢ 𝐴 ∈ V | |
Assertion | elint2 | ⊢ ( 𝐴 ∈ ∩ 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elint2.1 | ⊢ 𝐴 ∈ V | |
2 | 1 | elint | ⊢ ( 𝐴 ∈ ∩ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥 ) ) |
3 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥 ) ) | |
4 | 2 3 | bitr4i | ⊢ ( 𝐴 ∈ ∩ 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ) |