Metamath Proof Explorer
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993)
|
|
Ref |
Expression |
|
Hypothesis |
elintab.ex |
⊢ 𝐴 ∈ V |
|
Assertion |
elintab |
⊢ ( 𝐴 ∈ ∩ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
elintab.ex |
⊢ 𝐴 ∈ V |
2 |
|
elintabg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ ∩ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( 𝐴 ∈ ∩ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) |