Step |
Hyp |
Ref |
Expression |
1 |
|
inteqab.1 |
⊢ 𝐴 ∈ V |
2 |
1
|
elint |
⊢ ( 𝐴 ∈ ∩ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → 𝐴 ∈ 𝑦 ) ) |
3 |
|
nfsab1 |
⊢ Ⅎ 𝑥 𝑦 ∈ { 𝑥 ∣ 𝜑 } |
4 |
|
nfv |
⊢ Ⅎ 𝑥 𝐴 ∈ 𝑦 |
5 |
3 4
|
nfim |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → 𝐴 ∈ 𝑦 ) |
6 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) |
7 |
|
eleq1w |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑥 ∈ { 𝑥 ∣ 𝜑 } ) ) |
8 |
|
abid |
⊢ ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜑 ) |
9 |
7 8
|
bitrdi |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜑 ) ) |
10 |
|
eleq2w |
⊢ ( 𝑦 = 𝑥 → ( 𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑥 ) ) |
11 |
9 10
|
imbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → 𝐴 ∈ 𝑦 ) ↔ ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) |
12 |
5 6 11
|
cbvalv1 |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → 𝐴 ∈ 𝑦 ) ↔ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) |
13 |
2 12
|
bitri |
⊢ ( 𝐴 ∈ ∩ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) |