Metamath Proof Explorer


Theorem elintab

Description: Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993)

Ref Expression
Hypothesis elintab.ex 𝐴 ∈ V
Assertion elintab ( 𝐴 { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝜑𝐴𝑥 ) )

Proof

Step Hyp Ref Expression
1 elintab.ex 𝐴 ∈ V
2 elintabg ( 𝐴 ∈ V → ( 𝐴 { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝜑𝐴𝑥 ) ) )
3 1 2 ax-mp ( 𝐴 { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝜑𝐴𝑥 ) )