Metamath Proof Explorer


Theorem elintdv

Description: Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses elintdv.1 ( 𝜑𝐴𝑉 )
elintdv.2 ( ( 𝜑𝑥𝐵 ) → 𝐴𝑥 )
Assertion elintdv ( 𝜑𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 elintdv.1 ( 𝜑𝐴𝑉 )
2 elintdv.2 ( ( 𝜑𝑥𝐵 ) → 𝐴𝑥 )
3 nfv 𝑥 𝜑
4 3 1 2 elintd ( 𝜑𝐴 𝐵 )