Metamath Proof Explorer


Theorem elinti

Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999) (Proof shortened by Andrew Salmon, 9-Jul-2011)

Ref Expression
Assertion elinti ( 𝐴 𝐵 → ( 𝐶𝐵𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 elintg ( 𝐴 𝐵 → ( 𝐴 𝐵 ↔ ∀ 𝑥𝐵 𝐴𝑥 ) )
2 eleq2 ( 𝑥 = 𝐶 → ( 𝐴𝑥𝐴𝐶 ) )
3 2 rspccv ( ∀ 𝑥𝐵 𝐴𝑥 → ( 𝐶𝐵𝐴𝐶 ) )
4 1 3 syl6bi ( 𝐴 𝐵 → ( 𝐴 𝐵 → ( 𝐶𝐵𝐴𝐶 ) ) )
5 4 pm2.43i ( 𝐴 𝐵 → ( 𝐶𝐵𝐴𝐶 ) )