Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999) (Proof shortened by Andrew Salmon, 9-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | elinti | ⊢ ( 𝐴 ∈ ∩ 𝐵 → ( 𝐶 ∈ 𝐵 → 𝐴 ∈ 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elintg | ⊢ ( 𝐴 ∈ ∩ 𝐵 → ( 𝐴 ∈ ∩ 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ) ) | |
2 | eleq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐶 ) ) | |
3 | 2 | rspccv | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 → ( 𝐶 ∈ 𝐵 → 𝐴 ∈ 𝐶 ) ) |
4 | 1 3 | syl6bi | ⊢ ( 𝐴 ∈ ∩ 𝐵 → ( 𝐴 ∈ ∩ 𝐵 → ( 𝐶 ∈ 𝐵 → 𝐴 ∈ 𝐶 ) ) ) |
5 | 4 | pm2.43i | ⊢ ( 𝐴 ∈ ∩ 𝐵 → ( 𝐶 ∈ 𝐵 → 𝐴 ∈ 𝐶 ) ) |