Metamath Proof Explorer


Theorem elintrab

Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Oct-1999)

Ref Expression
Hypothesis inteqab.1 𝐴 ∈ V
Assertion elintrab ( 𝐴 { 𝑥𝐵𝜑 } ↔ ∀ 𝑥𝐵 ( 𝜑𝐴𝑥 ) )

Proof

Step Hyp Ref Expression
1 inteqab.1 𝐴 ∈ V
2 1 elintab ( 𝐴 { 𝑥 ∣ ( 𝑥𝐵𝜑 ) } ↔ ∀ 𝑥 ( ( 𝑥𝐵𝜑 ) → 𝐴𝑥 ) )
3 impexp ( ( ( 𝑥𝐵𝜑 ) → 𝐴𝑥 ) ↔ ( 𝑥𝐵 → ( 𝜑𝐴𝑥 ) ) )
4 3 albii ( ∀ 𝑥 ( ( 𝑥𝐵𝜑 ) → 𝐴𝑥 ) ↔ ∀ 𝑥 ( 𝑥𝐵 → ( 𝜑𝐴𝑥 ) ) )
5 2 4 bitri ( 𝐴 { 𝑥 ∣ ( 𝑥𝐵𝜑 ) } ↔ ∀ 𝑥 ( 𝑥𝐵 → ( 𝜑𝐴𝑥 ) ) )
6 df-rab { 𝑥𝐵𝜑 } = { 𝑥 ∣ ( 𝑥𝐵𝜑 ) }
7 6 inteqi { 𝑥𝐵𝜑 } = { 𝑥 ∣ ( 𝑥𝐵𝜑 ) }
8 7 eleq2i ( 𝐴 { 𝑥𝐵𝜑 } ↔ 𝐴 { 𝑥 ∣ ( 𝑥𝐵𝜑 ) } )
9 df-ral ( ∀ 𝑥𝐵 ( 𝜑𝐴𝑥 ) ↔ ∀ 𝑥 ( 𝑥𝐵 → ( 𝜑𝐴𝑥 ) ) )
10 5 8 9 3bitr4i ( 𝐴 { 𝑥𝐵𝜑 } ↔ ∀ 𝑥𝐵 ( 𝜑𝐴𝑥 ) )