Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Feb-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | elintrabg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ ∀ 𝑥 ∈ 𝐵 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ 𝐴 ∈ ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ) ) | |
2 | eleq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥 ) ) | |
3 | 2 | imbi2d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝜑 → 𝑦 ∈ 𝑥 ) ↔ ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) |
4 | 3 | ralbidv | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ∈ 𝐵 ( 𝜑 → 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) |
5 | vex | ⊢ 𝑦 ∈ V | |
6 | 5 | elintrab | ⊢ ( 𝑦 ∈ ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ ∀ 𝑥 ∈ 𝐵 ( 𝜑 → 𝑦 ∈ 𝑥 ) ) |
7 | 1 4 6 | vtoclbg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ ∀ 𝑥 ∈ 𝐵 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) |