Metamath Proof Explorer


Theorem elintrabg

Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Feb-2007)

Ref Expression
Assertion elintrabg ( 𝐴𝑉 → ( 𝐴 { 𝑥𝐵𝜑 } ↔ ∀ 𝑥𝐵 ( 𝜑𝐴𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 eleq1 ( 𝑦 = 𝐴 → ( 𝑦 { 𝑥𝐵𝜑 } ↔ 𝐴 { 𝑥𝐵𝜑 } ) )
2 eleq1 ( 𝑦 = 𝐴 → ( 𝑦𝑥𝐴𝑥 ) )
3 2 imbi2d ( 𝑦 = 𝐴 → ( ( 𝜑𝑦𝑥 ) ↔ ( 𝜑𝐴𝑥 ) ) )
4 3 ralbidv ( 𝑦 = 𝐴 → ( ∀ 𝑥𝐵 ( 𝜑𝑦𝑥 ) ↔ ∀ 𝑥𝐵 ( 𝜑𝐴𝑥 ) ) )
5 vex 𝑦 ∈ V
6 5 elintrab ( 𝑦 { 𝑥𝐵𝜑 } ↔ ∀ 𝑥𝐵 ( 𝜑𝑦𝑥 ) )
7 1 4 6 vtoclbg ( 𝐴𝑉 → ( 𝐴 { 𝑥𝐵𝜑 } ↔ ∀ 𝑥𝐵 ( 𝜑𝐴𝑥 ) ) )