Metamath Proof Explorer


Theorem eliocd

Description: Membership in a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses eliocd.a ( 𝜑𝐴 ∈ ℝ* )
eliocd.b ( 𝜑𝐵 ∈ ℝ* )
eliocd.c ( 𝜑𝐶 ∈ ℝ* )
eliocd.altc ( 𝜑𝐴 < 𝐶 )
eliocd.cleb ( 𝜑𝐶𝐵 )
Assertion eliocd ( 𝜑𝐶 ∈ ( 𝐴 (,] 𝐵 ) )

Proof

Step Hyp Ref Expression
1 eliocd.a ( 𝜑𝐴 ∈ ℝ* )
2 eliocd.b ( 𝜑𝐵 ∈ ℝ* )
3 eliocd.c ( 𝜑𝐶 ∈ ℝ* )
4 eliocd.altc ( 𝜑𝐴 < 𝐶 )
5 eliocd.cleb ( 𝜑𝐶𝐵 )
6 elioc1 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵 ) ) )
7 1 2 6 syl2anc ( 𝜑 → ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵 ) ) )
8 3 4 5 7 mpbir3and ( 𝜑𝐶 ∈ ( 𝐴 (,] 𝐵 ) )