Description: Membership in a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eliocd.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
eliocd.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | ||
eliocd.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | ||
eliocd.altc | ⊢ ( 𝜑 → 𝐴 < 𝐶 ) | ||
eliocd.cleb | ⊢ ( 𝜑 → 𝐶 ≤ 𝐵 ) | ||
Assertion | eliocd | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliocd.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
2 | eliocd.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | |
3 | eliocd.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | |
4 | eliocd.altc | ⊢ ( 𝜑 → 𝐴 < 𝐶 ) | |
5 | eliocd.cleb | ⊢ ( 𝜑 → 𝐶 ≤ 𝐵 ) | |
6 | elioc1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) | |
7 | 1 2 6 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
8 | 3 4 5 7 | mpbir3and | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) |