Step |
Hyp |
Ref |
Expression |
1 |
|
df-ioc |
⊢ (,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) |
2 |
1
|
elixx3g |
⊢ ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
3 |
2
|
biimpi |
⊢ ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
4 |
3
|
simpld |
⊢ ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ) |
5 |
4
|
simp3d |
⊢ ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → 𝐶 ∈ ℝ* ) |
6 |
5
|
adantl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐶 ∈ ℝ* ) |
7 |
|
simpl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐵 ∈ ℝ ) |
8 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
9 |
8
|
a1i |
⊢ ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → -∞ ∈ ℝ* ) |
10 |
4
|
simp1d |
⊢ ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → 𝐴 ∈ ℝ* ) |
11 |
|
mnfle |
⊢ ( 𝐴 ∈ ℝ* → -∞ ≤ 𝐴 ) |
12 |
10 11
|
syl |
⊢ ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → -∞ ≤ 𝐴 ) |
13 |
3
|
simprd |
⊢ ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → ( 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) |
14 |
13
|
simpld |
⊢ ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → 𝐴 < 𝐶 ) |
15 |
9 10 5 12 14
|
xrlelttrd |
⊢ ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → -∞ < 𝐶 ) |
16 |
15
|
adantl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → -∞ < 𝐶 ) |
17 |
13
|
simprd |
⊢ ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → 𝐶 ≤ 𝐵 ) |
18 |
17
|
adantl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐶 ≤ 𝐵 ) |
19 |
|
xrre |
⊢ ( ( ( 𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( -∞ < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) → 𝐶 ∈ ℝ ) |
20 |
6 7 16 18 19
|
syl22anc |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐶 ∈ ℝ ) |