Metamath Proof Explorer


Theorem eliocre

Description: A member of a left-open right-closed interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion eliocre ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐶 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 df-ioc (,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧𝑧𝑦 ) } )
2 1 elixx3g ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) ∧ ( 𝐴 < 𝐶𝐶𝐵 ) ) )
3 2 biimpi ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) ∧ ( 𝐴 < 𝐶𝐶𝐵 ) ) )
4 3 simpld ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) )
5 4 simp3d ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → 𝐶 ∈ ℝ* )
6 5 adantl ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐶 ∈ ℝ* )
7 simpl ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐵 ∈ ℝ )
8 mnfxr -∞ ∈ ℝ*
9 8 a1i ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → -∞ ∈ ℝ* )
10 4 simp1d ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → 𝐴 ∈ ℝ* )
11 mnfle ( 𝐴 ∈ ℝ* → -∞ ≤ 𝐴 )
12 10 11 syl ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → -∞ ≤ 𝐴 )
13 3 simprd ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → ( 𝐴 < 𝐶𝐶𝐵 ) )
14 13 simpld ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → 𝐴 < 𝐶 )
15 9 10 5 12 14 xrlelttrd ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → -∞ < 𝐶 )
16 15 adantl ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → -∞ < 𝐶 )
17 13 simprd ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → 𝐶𝐵 )
18 17 adantl ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐶𝐵 )
19 xrre ( ( ( 𝐶 ∈ ℝ*𝐵 ∈ ℝ ) ∧ ( -∞ < 𝐶𝐶𝐵 ) ) → 𝐶 ∈ ℝ )
20 6 7 16 18 19 syl22anc ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐶 ∈ ℝ )