Step |
Hyp |
Ref |
Expression |
1 |
|
iooval2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ) |
2 |
1
|
eleq2d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ 𝐶 ∈ { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ) ) |
3 |
|
breq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐴 < 𝑥 ↔ 𝐴 < 𝐶 ) ) |
4 |
|
breq1 |
⊢ ( 𝑥 = 𝐶 → ( 𝑥 < 𝐵 ↔ 𝐶 < 𝐵 ) ) |
5 |
3 4
|
anbi12d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ↔ ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
6 |
5
|
elrab |
⊢ ( 𝐶 ∈ { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ↔ ( 𝐶 ∈ ℝ ∧ ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
7 |
|
3anass |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
8 |
6 7
|
bitr4i |
⊢ ( 𝐶 ∈ { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) |
9 |
2 8
|
bitrdi |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |