| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elioo1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| 2 |
1
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| 3 |
|
3anass |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| 4 |
3
|
baibr |
⊢ ( 𝐶 ∈ ℝ* → ( ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| 5 |
4
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| 6 |
2 5
|
bitr4d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |