Metamath Proof Explorer


Theorem eliooord

Description: Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008) (Revised by Mario Carneiro, 9-May-2014)

Ref Expression
Assertion eliooord ( 𝐴 ∈ ( 𝐵 (,) 𝐶 ) → ( 𝐵 < 𝐴𝐴 < 𝐶 ) )

Proof

Step Hyp Ref Expression
1 eliooxr ( 𝐴 ∈ ( 𝐵 (,) 𝐶 ) → ( 𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) )
2 elioo2 ( ( 𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( 𝐴 ∈ ( 𝐵 (,) 𝐶 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶 ) ) )
3 1 2 syl ( 𝐴 ∈ ( 𝐵 (,) 𝐶 ) → ( 𝐴 ∈ ( 𝐵 (,) 𝐶 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶 ) ) )
4 3 ibi ( 𝐴 ∈ ( 𝐵 (,) 𝐶 ) → ( 𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶 ) )
5 3simpc ( ( 𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶 ) → ( 𝐵 < 𝐴𝐴 < 𝐶 ) )
6 4 5 syl ( 𝐴 ∈ ( 𝐵 (,) 𝐶 ) → ( 𝐵 < 𝐴𝐴 < 𝐶 ) )