Metamath Proof Explorer


Theorem elioore

Description: A member of an open interval of reals is a real. (Contributed by NM, 17-Aug-2008) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion elioore ( 𝐴 ∈ ( 𝐵 (,) 𝐶 ) → 𝐴 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 elioo3g ( 𝐴 ∈ ( 𝐵 (,) 𝐶 ) ↔ ( ( 𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐴 ∈ ℝ* ) ∧ ( 𝐵 < 𝐴𝐴 < 𝐶 ) ) )
2 3ancomb ( ( 𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐴 ∈ ℝ* ) ↔ ( 𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ℝ* ) )
3 xrre2 ( ( ( 𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ℝ* ) ∧ ( 𝐵 < 𝐴𝐴 < 𝐶 ) ) → 𝐴 ∈ ℝ )
4 2 3 sylanb ( ( ( 𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐴 ∈ ℝ* ) ∧ ( 𝐵 < 𝐴𝐴 < 𝐶 ) ) → 𝐴 ∈ ℝ )
5 1 4 sylbi ( 𝐴 ∈ ( 𝐵 (,) 𝐶 ) → 𝐴 ∈ ℝ )