Description: A member of an open interval of reals is a real. (Contributed by NM, 17-Aug-2008) (Revised by Mario Carneiro, 3-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elioore | ⊢ ( 𝐴 ∈ ( 𝐵 (,) 𝐶 ) → 𝐴 ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioo3g | ⊢ ( 𝐴 ∈ ( 𝐵 (,) 𝐶 ) ↔ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) ∧ ( 𝐵 < 𝐴 ∧ 𝐴 < 𝐶 ) ) ) | |
| 2 | 3ancomb | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) ↔ ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ) | |
| 3 | xrre2 | ⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐵 < 𝐴 ∧ 𝐴 < 𝐶 ) ) → 𝐴 ∈ ℝ ) | |
| 4 | 2 3 | sylanb | ⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) ∧ ( 𝐵 < 𝐴 ∧ 𝐴 < 𝐶 ) ) → 𝐴 ∈ ℝ ) |
| 5 | 1 4 | sylbi | ⊢ ( 𝐴 ∈ ( 𝐵 (,) 𝐶 ) → 𝐴 ∈ ℝ ) |