Step |
Hyp |
Ref |
Expression |
1 |
|
eliooshift.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
eliooshift.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
eliooshift.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
4 |
|
eliooshift.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
5 |
1 4
|
readdcld |
⊢ ( 𝜑 → ( 𝐴 + 𝐷 ) ∈ ℝ ) |
6 |
5 1
|
2thd |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐷 ) ∈ ℝ ↔ 𝐴 ∈ ℝ ) ) |
7 |
2 1 4
|
ltadd1d |
⊢ ( 𝜑 → ( 𝐵 < 𝐴 ↔ ( 𝐵 + 𝐷 ) < ( 𝐴 + 𝐷 ) ) ) |
8 |
7
|
bicomd |
⊢ ( 𝜑 → ( ( 𝐵 + 𝐷 ) < ( 𝐴 + 𝐷 ) ↔ 𝐵 < 𝐴 ) ) |
9 |
1 3 4
|
ltadd1d |
⊢ ( 𝜑 → ( 𝐴 < 𝐶 ↔ ( 𝐴 + 𝐷 ) < ( 𝐶 + 𝐷 ) ) ) |
10 |
9
|
bicomd |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐷 ) < ( 𝐶 + 𝐷 ) ↔ 𝐴 < 𝐶 ) ) |
11 |
6 8 10
|
3anbi123d |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐷 ) ∈ ℝ ∧ ( 𝐵 + 𝐷 ) < ( 𝐴 + 𝐷 ) ∧ ( 𝐴 + 𝐷 ) < ( 𝐶 + 𝐷 ) ) ↔ ( 𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶 ) ) ) |
12 |
2 4
|
readdcld |
⊢ ( 𝜑 → ( 𝐵 + 𝐷 ) ∈ ℝ ) |
13 |
12
|
rexrd |
⊢ ( 𝜑 → ( 𝐵 + 𝐷 ) ∈ ℝ* ) |
14 |
3 4
|
readdcld |
⊢ ( 𝜑 → ( 𝐶 + 𝐷 ) ∈ ℝ ) |
15 |
14
|
rexrd |
⊢ ( 𝜑 → ( 𝐶 + 𝐷 ) ∈ ℝ* ) |
16 |
|
elioo2 |
⊢ ( ( ( 𝐵 + 𝐷 ) ∈ ℝ* ∧ ( 𝐶 + 𝐷 ) ∈ ℝ* ) → ( ( 𝐴 + 𝐷 ) ∈ ( ( 𝐵 + 𝐷 ) (,) ( 𝐶 + 𝐷 ) ) ↔ ( ( 𝐴 + 𝐷 ) ∈ ℝ ∧ ( 𝐵 + 𝐷 ) < ( 𝐴 + 𝐷 ) ∧ ( 𝐴 + 𝐷 ) < ( 𝐶 + 𝐷 ) ) ) ) |
17 |
13 15 16
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐷 ) ∈ ( ( 𝐵 + 𝐷 ) (,) ( 𝐶 + 𝐷 ) ) ↔ ( ( 𝐴 + 𝐷 ) ∈ ℝ ∧ ( 𝐵 + 𝐷 ) < ( 𝐴 + 𝐷 ) ∧ ( 𝐴 + 𝐷 ) < ( 𝐶 + 𝐷 ) ) ) ) |
18 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
19 |
3
|
rexrd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
20 |
|
elioo2 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ∈ ( 𝐵 (,) 𝐶 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶 ) ) ) |
21 |
18 19 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐵 (,) 𝐶 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶 ) ) ) |
22 |
11 17 21
|
3bitr4rd |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐵 (,) 𝐶 ) ↔ ( 𝐴 + 𝐷 ) ∈ ( ( 𝐵 + 𝐷 ) (,) ( 𝐶 + 𝐷 ) ) ) ) |