Metamath Proof Explorer


Theorem eliooxr

Description: A nonempty open interval spans an interval of extended reals. (Contributed by NM, 17-Aug-2008)

Ref Expression
Assertion eliooxr ( 𝐴 ∈ ( 𝐵 (,) 𝐶 ) → ( 𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) )

Proof

Step Hyp Ref Expression
1 ne0i ( 𝐴 ∈ ( 𝐵 (,) 𝐶 ) → ( 𝐵 (,) 𝐶 ) ≠ ∅ )
2 ndmioo ( ¬ ( 𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( 𝐵 (,) 𝐶 ) = ∅ )
3 2 necon1ai ( ( 𝐵 (,) 𝐶 ) ≠ ∅ → ( 𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) )
4 1 3 syl ( 𝐴 ∈ ( 𝐵 (,) 𝐶 ) → ( 𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) )