Metamath Proof Explorer


Theorem elirrv

Description: The membership relation is irreflexive: no set is a member of itself. Theorem 105 of Suppes p. 54. (This is trivial to prove from zfregfr and efrirr , but this proof is direct from the Axiom of Regularity.) (Contributed by NM, 19-Aug-1993)

Ref Expression
Assertion elirrv ¬ 𝑥𝑥

Proof

Step Hyp Ref Expression
1 snex { 𝑥 } ∈ V
2 eleq1w ( 𝑦 = 𝑥 → ( 𝑦 ∈ { 𝑥 } ↔ 𝑥 ∈ { 𝑥 } ) )
3 vsnid 𝑥 ∈ { 𝑥 }
4 2 3 speivw 𝑦 𝑦 ∈ { 𝑥 }
5 zfregcl ( { 𝑥 } ∈ V → ( ∃ 𝑦 𝑦 ∈ { 𝑥 } → ∃ 𝑦 ∈ { 𝑥 } ∀ 𝑧𝑦 ¬ 𝑧 ∈ { 𝑥 } ) )
6 1 4 5 mp2 𝑦 ∈ { 𝑥 } ∀ 𝑧𝑦 ¬ 𝑧 ∈ { 𝑥 }
7 velsn ( 𝑦 ∈ { 𝑥 } ↔ 𝑦 = 𝑥 )
8 ax9 ( 𝑥 = 𝑦 → ( 𝑥𝑥𝑥𝑦 ) )
9 8 equcoms ( 𝑦 = 𝑥 → ( 𝑥𝑥𝑥𝑦 ) )
10 9 com12 ( 𝑥𝑥 → ( 𝑦 = 𝑥𝑥𝑦 ) )
11 7 10 syl5bi ( 𝑥𝑥 → ( 𝑦 ∈ { 𝑥 } → 𝑥𝑦 ) )
12 eleq1w ( 𝑧 = 𝑥 → ( 𝑧 ∈ { 𝑥 } ↔ 𝑥 ∈ { 𝑥 } ) )
13 12 notbid ( 𝑧 = 𝑥 → ( ¬ 𝑧 ∈ { 𝑥 } ↔ ¬ 𝑥 ∈ { 𝑥 } ) )
14 13 rspccv ( ∀ 𝑧𝑦 ¬ 𝑧 ∈ { 𝑥 } → ( 𝑥𝑦 → ¬ 𝑥 ∈ { 𝑥 } ) )
15 3 14 mt2i ( ∀ 𝑧𝑦 ¬ 𝑧 ∈ { 𝑥 } → ¬ 𝑥𝑦 )
16 11 15 nsyli ( 𝑥𝑥 → ( ∀ 𝑧𝑦 ¬ 𝑧 ∈ { 𝑥 } → ¬ 𝑦 ∈ { 𝑥 } ) )
17 16 con2d ( 𝑥𝑥 → ( 𝑦 ∈ { 𝑥 } → ¬ ∀ 𝑧𝑦 ¬ 𝑧 ∈ { 𝑥 } ) )
18 17 ralrimiv ( 𝑥𝑥 → ∀ 𝑦 ∈ { 𝑥 } ¬ ∀ 𝑧𝑦 ¬ 𝑧 ∈ { 𝑥 } )
19 ralnex ( ∀ 𝑦 ∈ { 𝑥 } ¬ ∀ 𝑧𝑦 ¬ 𝑧 ∈ { 𝑥 } ↔ ¬ ∃ 𝑦 ∈ { 𝑥 } ∀ 𝑧𝑦 ¬ 𝑧 ∈ { 𝑥 } )
20 18 19 sylib ( 𝑥𝑥 → ¬ ∃ 𝑦 ∈ { 𝑥 } ∀ 𝑧𝑦 ¬ 𝑧 ∈ { 𝑥 } )
21 6 20 mt2 ¬ 𝑥𝑥