Metamath Proof Explorer


Theorem elirrv

Description: The membership relation is irreflexive: no set is a member of itself. Theorem 105 of Suppes p. 54. This is trivial to prove from zfregfr and efrirr (see elirrvALT ), but this proof is direct from ax-reg . (Contributed by NM, 19-Aug-1993) Reduce axiom dependencies and make use of ax-reg directly. (Revised by BTernaryTau, 27-Dec-2025)

Ref Expression
Assertion elirrv ¬ 𝑥𝑥

Proof

Step Hyp Ref Expression
1 biimpr ( ( 𝑦𝑤𝑦 = 𝑥 ) → ( 𝑦 = 𝑥𝑦𝑤 ) )
2 1 alimi ( ∀ 𝑦 ( 𝑦𝑤𝑦 = 𝑥 ) → ∀ 𝑦 ( 𝑦 = 𝑥𝑦𝑤 ) )
3 elequ1 ( 𝑦 = 𝑥 → ( 𝑦𝑤𝑥𝑤 ) )
4 3 equsalvw ( ∀ 𝑦 ( 𝑦 = 𝑥𝑦𝑤 ) ↔ 𝑥𝑤 )
5 2 4 sylib ( ∀ 𝑦 ( 𝑦𝑤𝑦 = 𝑥 ) → 𝑥𝑤 )
6 3 equsexvw ( ∃ 𝑦 ( 𝑦 = 𝑥𝑦𝑤 ) ↔ 𝑥𝑤 )
7 exsimpr ( ∃ 𝑦 ( 𝑦 = 𝑥𝑦𝑤 ) → ∃ 𝑦 𝑦𝑤 )
8 6 7 sylbir ( 𝑥𝑤 → ∃ 𝑦 𝑦𝑤 )
9 ax-reg ( ∃ 𝑦 𝑦𝑤 → ∃ 𝑦 ( 𝑦𝑤 ∧ ∀ 𝑧 ( 𝑧𝑦 → ¬ 𝑧𝑤 ) ) )
10 8 9 syl ( 𝑥𝑤 → ∃ 𝑦 ( 𝑦𝑤 ∧ ∀ 𝑧 ( 𝑧𝑦 → ¬ 𝑧𝑤 ) ) )
11 elequ1 ( 𝑧 = 𝑥 → ( 𝑧𝑦𝑥𝑦 ) )
12 elequ1 ( 𝑧 = 𝑥 → ( 𝑧𝑤𝑥𝑤 ) )
13 12 notbid ( 𝑧 = 𝑥 → ( ¬ 𝑧𝑤 ↔ ¬ 𝑥𝑤 ) )
14 11 13 imbi12d ( 𝑧 = 𝑥 → ( ( 𝑧𝑦 → ¬ 𝑧𝑤 ) ↔ ( 𝑥𝑦 → ¬ 𝑥𝑤 ) ) )
15 14 spvv ( ∀ 𝑧 ( 𝑧𝑦 → ¬ 𝑧𝑤 ) → ( 𝑥𝑦 → ¬ 𝑥𝑤 ) )
16 con2 ( ( 𝑥𝑦 → ¬ 𝑥𝑤 ) → ( 𝑥𝑤 → ¬ 𝑥𝑦 ) )
17 16 com12 ( 𝑥𝑤 → ( ( 𝑥𝑦 → ¬ 𝑥𝑤 ) → ¬ 𝑥𝑦 ) )
18 17 anim2d ( 𝑥𝑤 → ( ( 𝑦𝑤 ∧ ( 𝑥𝑦 → ¬ 𝑥𝑤 ) ) → ( 𝑦𝑤 ∧ ¬ 𝑥𝑦 ) ) )
19 15 18 sylan2i ( 𝑥𝑤 → ( ( 𝑦𝑤 ∧ ∀ 𝑧 ( 𝑧𝑦 → ¬ 𝑧𝑤 ) ) → ( 𝑦𝑤 ∧ ¬ 𝑥𝑦 ) ) )
20 19 eximdv ( 𝑥𝑤 → ( ∃ 𝑦 ( 𝑦𝑤 ∧ ∀ 𝑧 ( 𝑧𝑦 → ¬ 𝑧𝑤 ) ) → ∃ 𝑦 ( 𝑦𝑤 ∧ ¬ 𝑥𝑦 ) ) )
21 10 20 mpd ( 𝑥𝑤 → ∃ 𝑦 ( 𝑦𝑤 ∧ ¬ 𝑥𝑦 ) )
22 19.29 ( ( ∀ 𝑦 ( 𝑦𝑤𝑦 = 𝑥 ) ∧ ∃ 𝑦 ( 𝑦𝑤 ∧ ¬ 𝑥𝑦 ) ) → ∃ 𝑦 ( ( 𝑦𝑤𝑦 = 𝑥 ) ∧ ( 𝑦𝑤 ∧ ¬ 𝑥𝑦 ) ) )
23 biimp ( ( 𝑦𝑤𝑦 = 𝑥 ) → ( 𝑦𝑤𝑦 = 𝑥 ) )
24 23 anim1d ( ( 𝑦𝑤𝑦 = 𝑥 ) → ( ( 𝑦𝑤 ∧ ¬ 𝑥𝑦 ) → ( 𝑦 = 𝑥 ∧ ¬ 𝑥𝑦 ) ) )
25 ax9v2 ( 𝑥 = 𝑦 → ( 𝑥𝑥𝑥𝑦 ) )
26 25 equcoms ( 𝑦 = 𝑥 → ( 𝑥𝑥𝑥𝑦 ) )
27 26 con3dimp ( ( 𝑦 = 𝑥 ∧ ¬ 𝑥𝑦 ) → ¬ 𝑥𝑥 )
28 24 27 syl6 ( ( 𝑦𝑤𝑦 = 𝑥 ) → ( ( 𝑦𝑤 ∧ ¬ 𝑥𝑦 ) → ¬ 𝑥𝑥 ) )
29 28 imp ( ( ( 𝑦𝑤𝑦 = 𝑥 ) ∧ ( 𝑦𝑤 ∧ ¬ 𝑥𝑦 ) ) → ¬ 𝑥𝑥 )
30 29 exlimiv ( ∃ 𝑦 ( ( 𝑦𝑤𝑦 = 𝑥 ) ∧ ( 𝑦𝑤 ∧ ¬ 𝑥𝑦 ) ) → ¬ 𝑥𝑥 )
31 22 30 syl ( ( ∀ 𝑦 ( 𝑦𝑤𝑦 = 𝑥 ) ∧ ∃ 𝑦 ( 𝑦𝑤 ∧ ¬ 𝑥𝑦 ) ) → ¬ 𝑥𝑥 )
32 21 31 sylan2 ( ( ∀ 𝑦 ( 𝑦𝑤𝑦 = 𝑥 ) ∧ 𝑥𝑤 ) → ¬ 𝑥𝑥 )
33 5 32 mpdan ( ∀ 𝑦 ( 𝑦𝑤𝑦 = 𝑥 ) → ¬ 𝑥𝑥 )
34 el 𝑤 𝑥𝑤
35 4 biimpri ( 𝑥𝑤 → ∀ 𝑦 ( 𝑦 = 𝑥𝑦𝑤 ) )
36 34 35 eximii 𝑤𝑦 ( 𝑦 = 𝑥𝑦𝑤 )
37 36 sepexi 𝑤𝑦 ( 𝑦𝑤𝑦 = 𝑥 )
38 33 37 exlimiiv ¬ 𝑥𝑥