| Step |
Hyp |
Ref |
Expression |
| 1 |
|
biimpr |
⊢ ( ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) → ( 𝑦 = 𝑥 → 𝑦 ∈ 𝑤 ) ) |
| 2 |
1
|
alimi |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) → ∀ 𝑦 ( 𝑦 = 𝑥 → 𝑦 ∈ 𝑤 ) ) |
| 3 |
|
elequ1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝑤 ↔ 𝑥 ∈ 𝑤 ) ) |
| 4 |
3
|
equsalvw |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑥 → 𝑦 ∈ 𝑤 ) ↔ 𝑥 ∈ 𝑤 ) |
| 5 |
2 4
|
sylib |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) → 𝑥 ∈ 𝑤 ) |
| 6 |
3
|
equsexvw |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝑥 ∧ 𝑦 ∈ 𝑤 ) ↔ 𝑥 ∈ 𝑤 ) |
| 7 |
|
exsimpr |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝑥 ∧ 𝑦 ∈ 𝑤 ) → ∃ 𝑦 𝑦 ∈ 𝑤 ) |
| 8 |
6 7
|
sylbir |
⊢ ( 𝑥 ∈ 𝑤 → ∃ 𝑦 𝑦 ∈ 𝑤 ) |
| 9 |
|
ax-reg |
⊢ ( ∃ 𝑦 𝑦 ∈ 𝑤 → ∃ 𝑦 ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑤 ) ) ) |
| 10 |
8 9
|
syl |
⊢ ( 𝑥 ∈ 𝑤 → ∃ 𝑦 ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑤 ) ) ) |
| 11 |
|
elequ1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦 ) ) |
| 12 |
|
elequ1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝑤 ↔ 𝑥 ∈ 𝑤 ) ) |
| 13 |
12
|
notbid |
⊢ ( 𝑧 = 𝑥 → ( ¬ 𝑧 ∈ 𝑤 ↔ ¬ 𝑥 ∈ 𝑤 ) ) |
| 14 |
11 13
|
imbi12d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑤 ) ↔ ( 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑤 ) ) ) |
| 15 |
14
|
spvv |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑤 ) → ( 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑤 ) ) |
| 16 |
|
con2 |
⊢ ( ( 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑤 ) → ( 𝑥 ∈ 𝑤 → ¬ 𝑥 ∈ 𝑦 ) ) |
| 17 |
16
|
com12 |
⊢ ( 𝑥 ∈ 𝑤 → ( ( 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑤 ) → ¬ 𝑥 ∈ 𝑦 ) ) |
| 18 |
17
|
anim2d |
⊢ ( 𝑥 ∈ 𝑤 → ( ( 𝑦 ∈ 𝑤 ∧ ( 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑤 ) ) → ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦 ) ) ) |
| 19 |
15 18
|
sylan2i |
⊢ ( 𝑥 ∈ 𝑤 → ( ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑤 ) ) → ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦 ) ) ) |
| 20 |
19
|
eximdv |
⊢ ( 𝑥 ∈ 𝑤 → ( ∃ 𝑦 ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑤 ) ) → ∃ 𝑦 ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦 ) ) ) |
| 21 |
10 20
|
mpd |
⊢ ( 𝑥 ∈ 𝑤 → ∃ 𝑦 ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦 ) ) |
| 22 |
|
19.29 |
⊢ ( ( ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) ∧ ∃ 𝑦 ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦 ) ) → ∃ 𝑦 ( ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦 ) ) ) |
| 23 |
|
biimp |
⊢ ( ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) → ( 𝑦 ∈ 𝑤 → 𝑦 = 𝑥 ) ) |
| 24 |
23
|
anim1d |
⊢ ( ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) → ( ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦 ) → ( 𝑦 = 𝑥 ∧ ¬ 𝑥 ∈ 𝑦 ) ) ) |
| 25 |
|
ax9v2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 → 𝑥 ∈ 𝑦 ) ) |
| 26 |
25
|
equcoms |
⊢ ( 𝑦 = 𝑥 → ( 𝑥 ∈ 𝑥 → 𝑥 ∈ 𝑦 ) ) |
| 27 |
26
|
con3dimp |
⊢ ( ( 𝑦 = 𝑥 ∧ ¬ 𝑥 ∈ 𝑦 ) → ¬ 𝑥 ∈ 𝑥 ) |
| 28 |
24 27
|
syl6 |
⊢ ( ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) → ( ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦 ) → ¬ 𝑥 ∈ 𝑥 ) ) |
| 29 |
28
|
imp |
⊢ ( ( ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦 ) ) → ¬ 𝑥 ∈ 𝑥 ) |
| 30 |
29
|
exlimiv |
⊢ ( ∃ 𝑦 ( ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦 ) ) → ¬ 𝑥 ∈ 𝑥 ) |
| 31 |
22 30
|
syl |
⊢ ( ( ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) ∧ ∃ 𝑦 ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦 ) ) → ¬ 𝑥 ∈ 𝑥 ) |
| 32 |
21 31
|
sylan2 |
⊢ ( ( ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) ∧ 𝑥 ∈ 𝑤 ) → ¬ 𝑥 ∈ 𝑥 ) |
| 33 |
5 32
|
mpdan |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) → ¬ 𝑥 ∈ 𝑥 ) |
| 34 |
|
el |
⊢ ∃ 𝑤 𝑥 ∈ 𝑤 |
| 35 |
4
|
biimpri |
⊢ ( 𝑥 ∈ 𝑤 → ∀ 𝑦 ( 𝑦 = 𝑥 → 𝑦 ∈ 𝑤 ) ) |
| 36 |
34 35
|
eximii |
⊢ ∃ 𝑤 ∀ 𝑦 ( 𝑦 = 𝑥 → 𝑦 ∈ 𝑤 ) |
| 37 |
36
|
sepexi |
⊢ ∃ 𝑤 ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) |
| 38 |
33 37
|
exlimiiv |
⊢ ¬ 𝑥 ∈ 𝑥 |