Step |
Hyp |
Ref |
Expression |
1 |
|
snex |
⊢ { 𝑥 } ∈ V |
2 |
|
eleq1w |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ { 𝑥 } ↔ 𝑥 ∈ { 𝑥 } ) ) |
3 |
|
vsnid |
⊢ 𝑥 ∈ { 𝑥 } |
4 |
2 3
|
speivw |
⊢ ∃ 𝑦 𝑦 ∈ { 𝑥 } |
5 |
|
zfregcl |
⊢ ( { 𝑥 } ∈ V → ( ∃ 𝑦 𝑦 ∈ { 𝑥 } → ∃ 𝑦 ∈ { 𝑥 } ∀ 𝑧 ∈ 𝑦 ¬ 𝑧 ∈ { 𝑥 } ) ) |
6 |
1 4 5
|
mp2 |
⊢ ∃ 𝑦 ∈ { 𝑥 } ∀ 𝑧 ∈ 𝑦 ¬ 𝑧 ∈ { 𝑥 } |
7 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝑥 } ↔ 𝑦 = 𝑥 ) |
8 |
|
ax9 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 → 𝑥 ∈ 𝑦 ) ) |
9 |
8
|
equcoms |
⊢ ( 𝑦 = 𝑥 → ( 𝑥 ∈ 𝑥 → 𝑥 ∈ 𝑦 ) ) |
10 |
9
|
com12 |
⊢ ( 𝑥 ∈ 𝑥 → ( 𝑦 = 𝑥 → 𝑥 ∈ 𝑦 ) ) |
11 |
7 10
|
syl5bi |
⊢ ( 𝑥 ∈ 𝑥 → ( 𝑦 ∈ { 𝑥 } → 𝑥 ∈ 𝑦 ) ) |
12 |
|
eleq1w |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ { 𝑥 } ↔ 𝑥 ∈ { 𝑥 } ) ) |
13 |
12
|
notbid |
⊢ ( 𝑧 = 𝑥 → ( ¬ 𝑧 ∈ { 𝑥 } ↔ ¬ 𝑥 ∈ { 𝑥 } ) ) |
14 |
13
|
rspccv |
⊢ ( ∀ 𝑧 ∈ 𝑦 ¬ 𝑧 ∈ { 𝑥 } → ( 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ { 𝑥 } ) ) |
15 |
3 14
|
mt2i |
⊢ ( ∀ 𝑧 ∈ 𝑦 ¬ 𝑧 ∈ { 𝑥 } → ¬ 𝑥 ∈ 𝑦 ) |
16 |
11 15
|
nsyli |
⊢ ( 𝑥 ∈ 𝑥 → ( ∀ 𝑧 ∈ 𝑦 ¬ 𝑧 ∈ { 𝑥 } → ¬ 𝑦 ∈ { 𝑥 } ) ) |
17 |
16
|
con2d |
⊢ ( 𝑥 ∈ 𝑥 → ( 𝑦 ∈ { 𝑥 } → ¬ ∀ 𝑧 ∈ 𝑦 ¬ 𝑧 ∈ { 𝑥 } ) ) |
18 |
17
|
ralrimiv |
⊢ ( 𝑥 ∈ 𝑥 → ∀ 𝑦 ∈ { 𝑥 } ¬ ∀ 𝑧 ∈ 𝑦 ¬ 𝑧 ∈ { 𝑥 } ) |
19 |
|
ralnex |
⊢ ( ∀ 𝑦 ∈ { 𝑥 } ¬ ∀ 𝑧 ∈ 𝑦 ¬ 𝑧 ∈ { 𝑥 } ↔ ¬ ∃ 𝑦 ∈ { 𝑥 } ∀ 𝑧 ∈ 𝑦 ¬ 𝑧 ∈ { 𝑥 } ) |
20 |
18 19
|
sylib |
⊢ ( 𝑥 ∈ 𝑥 → ¬ ∃ 𝑦 ∈ { 𝑥 } ∀ 𝑧 ∈ 𝑦 ¬ 𝑧 ∈ { 𝑥 } ) |
21 |
6 20
|
mt2 |
⊢ ¬ 𝑥 ∈ 𝑥 |