Metamath Proof Explorer


Theorem elisset

Description: An element of a class exists. (Contributed by NM, 1-May-1995) Reduce dependencies on axioms. (Revised by BJ, 29-Apr-2019)

Ref Expression
Assertion elisset ( 𝐴𝑉 → ∃ 𝑥 𝑥 = 𝐴 )

Proof

Step Hyp Ref Expression
1 elissetv ( 𝐴𝑉 → ∃ 𝑦 𝑦 = 𝐴 )
2 vextru 𝑦 ∈ { 𝑧 ∣ ⊤ }
3 2 biantru ( 𝑦 = 𝐴 ↔ ( 𝑦 = 𝐴𝑦 ∈ { 𝑧 ∣ ⊤ } ) )
4 3 exbii ( ∃ 𝑦 𝑦 = 𝐴 ↔ ∃ 𝑦 ( 𝑦 = 𝐴𝑦 ∈ { 𝑧 ∣ ⊤ } ) )
5 dfclel ( 𝐴 ∈ { 𝑧 ∣ ⊤ } ↔ ∃ 𝑦 ( 𝑦 = 𝐴𝑦 ∈ { 𝑧 ∣ ⊤ } ) )
6 4 5 bitr4i ( ∃ 𝑦 𝑦 = 𝐴𝐴 ∈ { 𝑧 ∣ ⊤ } )
7 vextru 𝑥 ∈ { 𝑧 ∣ ⊤ }
8 7 biantru ( 𝑥 = 𝐴 ↔ ( 𝑥 = 𝐴𝑥 ∈ { 𝑧 ∣ ⊤ } ) )
9 8 exbii ( ∃ 𝑥 𝑥 = 𝐴 ↔ ∃ 𝑥 ( 𝑥 = 𝐴𝑥 ∈ { 𝑧 ∣ ⊤ } ) )
10 dfclel ( 𝐴 ∈ { 𝑧 ∣ ⊤ } ↔ ∃ 𝑥 ( 𝑥 = 𝐴𝑥 ∈ { 𝑧 ∣ ⊤ } ) )
11 9 10 bitr4i ( ∃ 𝑥 𝑥 = 𝐴𝐴 ∈ { 𝑧 ∣ ⊤ } )
12 6 11 bitr4i ( ∃ 𝑦 𝑦 = 𝐴 ↔ ∃ 𝑥 𝑥 = 𝐴 )
13 1 12 sylib ( 𝐴𝑉 → ∃ 𝑥 𝑥 = 𝐴 )