Metamath Proof Explorer


Theorem elisset

Description: An element of a class exists. Use elissetv instead when sufficient (for instance in usages where x is a dummy variable). (Contributed by NM, 1-May-1995) Reduce dependencies on axioms. (Revised by BJ, 29-Apr-2019)

Ref Expression
Assertion elisset ( 𝐴𝑉 → ∃ 𝑥 𝑥 = 𝐴 )

Proof

Step Hyp Ref Expression
1 elissetv ( 𝐴𝑉 → ∃ 𝑦 𝑦 = 𝐴 )
2 vextru 𝑦 ∈ { 𝑧 ∣ ⊤ }
3 2 issetlem ( 𝐴 ∈ { 𝑧 ∣ ⊤ } ↔ ∃ 𝑦 𝑦 = 𝐴 )
4 vextru 𝑥 ∈ { 𝑧 ∣ ⊤ }
5 4 issetlem ( 𝐴 ∈ { 𝑧 ∣ ⊤ } ↔ ∃ 𝑥 𝑥 = 𝐴 )
6 3 5 bitr3i ( ∃ 𝑦 𝑦 = 𝐴 ↔ ∃ 𝑥 𝑥 = 𝐴 )
7 1 6 sylib ( 𝐴𝑉 → ∃ 𝑥 𝑥 = 𝐴 )