Description: Membership in indexed union. (Contributed by NM, 3-Sep-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | eliun | ⊢ ( 𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | ⊢ ( 𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 → 𝐴 ∈ V ) | |
2 | elex | ⊢ ( 𝐴 ∈ 𝐶 → 𝐴 ∈ V ) | |
3 | 2 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 → 𝐴 ∈ V ) |
4 | eleq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶 ) ) | |
5 | 4 | rexbidv | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ) ) |
6 | df-iun | ⊢ ∪ 𝑥 ∈ 𝐵 𝐶 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 } | |
7 | 5 6 | elab2g | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ) ) |
8 | 1 3 7 | pm5.21nii | ⊢ ( 𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ) |