Description: Membership in indexed union. (Contributed by Glauco Siliprandi, 15-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | eliund.1 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ) | |
Assertion | eliund | ⊢ ( 𝜑 → 𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliund.1 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ) | |
2 | eliun | ⊢ ( 𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ) | |
3 | 1 2 | sylibr | ⊢ ( 𝜑 → 𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ) |