Metamath Proof Explorer


Theorem eliund

Description: Membership in indexed union. (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypothesis eliund.1 ( 𝜑 → ∃ 𝑥𝐵 𝐴𝐶 )
Assertion eliund ( 𝜑𝐴 𝑥𝐵 𝐶 )

Proof

Step Hyp Ref Expression
1 eliund.1 ( 𝜑 → ∃ 𝑥𝐵 𝐴𝐶 )
2 eliun ( 𝐴 𝑥𝐵 𝐶 ↔ ∃ 𝑥𝐵 𝐴𝐶 )
3 1 2 sylibr ( 𝜑𝐴 𝑥𝐵 𝐶 )