Description: Membership in indexed union. (Contributed by Glauco Siliprandi, 15-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eliund.1 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ) | |
| Assertion | eliund | ⊢ ( 𝜑 → 𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliund.1 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ) | |
| 2 | eliun | ⊢ ( 𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ) | |
| 3 | 1 2 | sylibr | ⊢ ( 𝜑 → 𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ) |