Description: Membership in an indexed union, one way. (Contributed by JJ, 27-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eliuni.1 | ⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) | |
| Assertion | eliuni | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ 𝐶 ) → 𝐸 ∈ ∪ 𝑥 ∈ 𝐷 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliuni.1 | ⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝑥 = 𝐴 → ( 𝐸 ∈ 𝐵 ↔ 𝐸 ∈ 𝐶 ) ) |
| 3 | 2 | rspcev | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ 𝐶 ) → ∃ 𝑥 ∈ 𝐷 𝐸 ∈ 𝐵 ) |
| 4 | eliun | ⊢ ( 𝐸 ∈ ∪ 𝑥 ∈ 𝐷 𝐵 ↔ ∃ 𝑥 ∈ 𝐷 𝐸 ∈ 𝐵 ) | |
| 5 | 3 4 | sylibr | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ 𝐶 ) → 𝐸 ∈ ∪ 𝑥 ∈ 𝐷 𝐵 ) |