Metamath Proof Explorer


Theorem eliuni

Description: Membership in an indexed union, one way. (Contributed by JJ, 27-Jul-2021)

Ref Expression
Hypothesis eliuni.1 ( 𝑥 = 𝐴𝐵 = 𝐶 )
Assertion eliuni ( ( 𝐴𝐷𝐸𝐶 ) → 𝐸 𝑥𝐷 𝐵 )

Proof

Step Hyp Ref Expression
1 eliuni.1 ( 𝑥 = 𝐴𝐵 = 𝐶 )
2 1 eleq2d ( 𝑥 = 𝐴 → ( 𝐸𝐵𝐸𝐶 ) )
3 2 rspcev ( ( 𝐴𝐷𝐸𝐶 ) → ∃ 𝑥𝐷 𝐸𝐵 )
4 eliun ( 𝐸 𝑥𝐷 𝐵 ↔ ∃ 𝑥𝐷 𝐸𝐵 )
5 3 4 sylibr ( ( 𝐴𝐷𝐸𝐶 ) → 𝐸 𝑥𝐷 𝐵 )