Description: Membership in indexed union. (Contributed by Glauco Siliprandi, 5-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | eliunid | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspe | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) | |
2 | eliun | ⊢ ( 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) | |
3 | 1 2 | sylibr | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |