Metamath Proof Explorer


Theorem eliunid

Description: Membership in indexed union. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Assertion eliunid ( ( 𝑥𝐴𝐶𝐵 ) → 𝐶 𝑥𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 rspe ( ( 𝑥𝐴𝐶𝐵 ) → ∃ 𝑥𝐴 𝐶𝐵 )
2 eliun ( 𝐶 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴 𝐶𝐵 )
3 1 2 sylibr ( ( 𝑥𝐴𝐶𝐵 ) → 𝐶 𝑥𝐴 𝐵 )