Metamath Proof Explorer


Theorem eliuniin

Description: Indexed union of indexed intersections. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis eliuniin.1 𝐴 = 𝑥𝐵 𝑦𝐶 𝐷
Assertion eliuniin ( 𝑍𝑉 → ( 𝑍𝐴 ↔ ∃ 𝑥𝐵𝑦𝐶 𝑍𝐷 ) )

Proof

Step Hyp Ref Expression
1 eliuniin.1 𝐴 = 𝑥𝐵 𝑦𝐶 𝐷
2 1 eleq2i ( 𝑍𝐴𝑍 𝑥𝐵 𝑦𝐶 𝐷 )
3 eliun ( 𝑍 𝑥𝐵 𝑦𝐶 𝐷 ↔ ∃ 𝑥𝐵 𝑍 𝑦𝐶 𝐷 )
4 2 3 sylbb ( 𝑍𝐴 → ∃ 𝑥𝐵 𝑍 𝑦𝐶 𝐷 )
5 eliin ( 𝑍 𝑦𝐶 𝐷 → ( 𝑍 𝑦𝐶 𝐷 ↔ ∀ 𝑦𝐶 𝑍𝐷 ) )
6 5 ibi ( 𝑍 𝑦𝐶 𝐷 → ∀ 𝑦𝐶 𝑍𝐷 )
7 6 a1i ( 𝑍𝐴 → ( 𝑍 𝑦𝐶 𝐷 → ∀ 𝑦𝐶 𝑍𝐷 ) )
8 7 reximdv ( 𝑍𝐴 → ( ∃ 𝑥𝐵 𝑍 𝑦𝐶 𝐷 → ∃ 𝑥𝐵𝑦𝐶 𝑍𝐷 ) )
9 4 8 mpd ( 𝑍𝐴 → ∃ 𝑥𝐵𝑦𝐶 𝑍𝐷 )
10 simp2 ( ( 𝑍𝑉𝑥𝐵 ∧ ∀ 𝑦𝐶 𝑍𝐷 ) → 𝑥𝐵 )
11 eliin ( 𝑍𝑉 → ( 𝑍 𝑦𝐶 𝐷 ↔ ∀ 𝑦𝐶 𝑍𝐷 ) )
12 11 biimpar ( ( 𝑍𝑉 ∧ ∀ 𝑦𝐶 𝑍𝐷 ) → 𝑍 𝑦𝐶 𝐷 )
13 rspe ( ( 𝑥𝐵𝑍 𝑦𝐶 𝐷 ) → ∃ 𝑥𝐵 𝑍 𝑦𝐶 𝐷 )
14 10 12 13 3imp3i2an ( ( 𝑍𝑉𝑥𝐵 ∧ ∀ 𝑦𝐶 𝑍𝐷 ) → ∃ 𝑥𝐵 𝑍 𝑦𝐶 𝐷 )
15 14 3 sylibr ( ( 𝑍𝑉𝑥𝐵 ∧ ∀ 𝑦𝐶 𝑍𝐷 ) → 𝑍 𝑥𝐵 𝑦𝐶 𝐷 )
16 15 2 sylibr ( ( 𝑍𝑉𝑥𝐵 ∧ ∀ 𝑦𝐶 𝑍𝐷 ) → 𝑍𝐴 )
17 16 rexlimdv3a ( 𝑍𝑉 → ( ∃ 𝑥𝐵𝑦𝐶 𝑍𝐷𝑍𝐴 ) )
18 9 17 impbid2 ( 𝑍𝑉 → ( 𝑍𝐴 ↔ ∃ 𝑥𝐵𝑦𝐶 𝑍𝐷 ) )