Step |
Hyp |
Ref |
Expression |
1 |
|
eliuniin.1 |
⊢ 𝐴 = ∪ 𝑥 ∈ 𝐵 ∩ 𝑦 ∈ 𝐶 𝐷 |
2 |
1
|
eleq2i |
⊢ ( 𝑍 ∈ 𝐴 ↔ 𝑍 ∈ ∪ 𝑥 ∈ 𝐵 ∩ 𝑦 ∈ 𝐶 𝐷 ) |
3 |
|
eliun |
⊢ ( 𝑍 ∈ ∪ 𝑥 ∈ 𝐵 ∩ 𝑦 ∈ 𝐶 𝐷 ↔ ∃ 𝑥 ∈ 𝐵 𝑍 ∈ ∩ 𝑦 ∈ 𝐶 𝐷 ) |
4 |
2 3
|
sylbb |
⊢ ( 𝑍 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐵 𝑍 ∈ ∩ 𝑦 ∈ 𝐶 𝐷 ) |
5 |
|
eliin |
⊢ ( 𝑍 ∈ ∩ 𝑦 ∈ 𝐶 𝐷 → ( 𝑍 ∈ ∩ 𝑦 ∈ 𝐶 𝐷 ↔ ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ) ) |
6 |
5
|
ibi |
⊢ ( 𝑍 ∈ ∩ 𝑦 ∈ 𝐶 𝐷 → ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ) |
7 |
6
|
a1i |
⊢ ( 𝑍 ∈ 𝐴 → ( 𝑍 ∈ ∩ 𝑦 ∈ 𝐶 𝐷 → ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ) ) |
8 |
7
|
reximdv |
⊢ ( 𝑍 ∈ 𝐴 → ( ∃ 𝑥 ∈ 𝐵 𝑍 ∈ ∩ 𝑦 ∈ 𝐶 𝐷 → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ) ) |
9 |
4 8
|
mpd |
⊢ ( 𝑍 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ) |
10 |
|
simp2 |
⊢ ( ( 𝑍 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ) → 𝑥 ∈ 𝐵 ) |
11 |
|
eliin |
⊢ ( 𝑍 ∈ 𝑉 → ( 𝑍 ∈ ∩ 𝑦 ∈ 𝐶 𝐷 ↔ ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ) ) |
12 |
11
|
biimpar |
⊢ ( ( 𝑍 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ) → 𝑍 ∈ ∩ 𝑦 ∈ 𝐶 𝐷 ) |
13 |
|
rspe |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑍 ∈ ∩ 𝑦 ∈ 𝐶 𝐷 ) → ∃ 𝑥 ∈ 𝐵 𝑍 ∈ ∩ 𝑦 ∈ 𝐶 𝐷 ) |
14 |
10 12 13
|
3imp3i2an |
⊢ ( ( 𝑍 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ) → ∃ 𝑥 ∈ 𝐵 𝑍 ∈ ∩ 𝑦 ∈ 𝐶 𝐷 ) |
15 |
14 3
|
sylibr |
⊢ ( ( 𝑍 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ) → 𝑍 ∈ ∪ 𝑥 ∈ 𝐵 ∩ 𝑦 ∈ 𝐶 𝐷 ) |
16 |
15 2
|
sylibr |
⊢ ( ( 𝑍 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ) → 𝑍 ∈ 𝐴 ) |
17 |
16
|
rexlimdv3a |
⊢ ( 𝑍 ∈ 𝑉 → ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 → 𝑍 ∈ 𝐴 ) ) |
18 |
9 17
|
impbid2 |
⊢ ( 𝑍 ∈ 𝑉 → ( 𝑍 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ) ) |