Metamath Proof Explorer


Theorem elixp

Description: Membership in an infinite Cartesian product. (Contributed by NM, 28-Sep-2006)

Ref Expression
Hypothesis elixp.1 𝐹 ∈ V
Assertion elixp ( 𝐹X 𝑥𝐴 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 elixp.1 𝐹 ∈ V
2 elixp2 ( 𝐹X 𝑥𝐴 𝐵 ↔ ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 ) )
3 3anass ( ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 ) ↔ ( 𝐹 ∈ V ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 ) ) )
4 1 3 mpbiran ( ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 ) ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 ) )
5 2 4 bitri ( 𝐹X 𝑥𝐴 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 ) )