Step |
Hyp |
Ref |
Expression |
1 |
|
fneq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 Fn 𝐴 ↔ 𝐹 Fn 𝐴 ) ) |
2 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
3 |
2
|
eleq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
4 |
3
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
5 |
1 4
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
6 |
|
dfixp |
⊢ X 𝑥 ∈ 𝐴 𝐵 = { 𝑓 ∣ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) } |
7 |
5 6
|
elab2g |
⊢ ( 𝐹 ∈ V → ( 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
8 |
7
|
pm5.32i |
⊢ ( ( 𝐹 ∈ V ∧ 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 ) ↔ ( 𝐹 ∈ V ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
9 |
|
elex |
⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 → 𝐹 ∈ V ) |
10 |
9
|
pm4.71ri |
⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝐹 ∈ V ∧ 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 ) ) |
11 |
|
3anass |
⊢ ( ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ↔ ( 𝐹 ∈ V ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
12 |
8 10 11
|
3bitr4i |
⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |