Metamath Proof Explorer


Theorem elixpconst

Description: Membership in an infinite Cartesian product of a constant B . (Contributed by NM, 12-Apr-2008)

Ref Expression
Hypothesis elixp.1 𝐹 ∈ V
Assertion elixpconst ( 𝐹X 𝑥𝐴 𝐵𝐹 : 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 elixp.1 𝐹 ∈ V
2 1 elixp ( 𝐹X 𝑥𝐴 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 ) )
3 ffnfv ( 𝐹 : 𝐴𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 ) )
4 2 3 bitr4i ( 𝐹X 𝑥𝐴 𝐵𝐹 : 𝐴𝐵 )