Description: Membership in an infinite Cartesian product of a constant B . (Contributed by NM, 12-Apr-2008)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elixp.1 | ⊢ 𝐹 ∈ V | |
Assertion | elixpconst | ⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elixp.1 | ⊢ 𝐹 ∈ V | |
2 | 1 | elixp | ⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
3 | ffnfv | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) | |
4 | 2 3 | bitr4i | ⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) |