Metamath Proof Explorer


Theorem elixpconstg

Description: Membership in an infinite Cartesian product of a constant B . (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Assertion elixpconstg ( 𝐹𝑉 → ( 𝐹X 𝑥𝐴 𝐵𝐹 : 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 ixpfn ( 𝐹X 𝑥𝐴 𝐵𝐹 Fn 𝐴 )
2 elixp2 ( 𝐹X 𝑥𝐴 𝐵 ↔ ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 ) )
3 2 simp3bi ( 𝐹X 𝑥𝐴 𝐵 → ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 )
4 ffnfv ( 𝐹 : 𝐴𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 ) )
5 1 3 4 sylanbrc ( 𝐹X 𝑥𝐴 𝐵𝐹 : 𝐴𝐵 )
6 elex ( 𝐹𝑉𝐹 ∈ V )
7 6 adantr ( ( 𝐹𝑉𝐹 : 𝐴𝐵 ) → 𝐹 ∈ V )
8 ffn ( 𝐹 : 𝐴𝐵𝐹 Fn 𝐴 )
9 8 adantl ( ( 𝐹𝑉𝐹 : 𝐴𝐵 ) → 𝐹 Fn 𝐴 )
10 4 simprbi ( 𝐹 : 𝐴𝐵 → ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 )
11 10 adantl ( ( 𝐹𝑉𝐹 : 𝐴𝐵 ) → ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 )
12 7 9 11 2 syl3anbrc ( ( 𝐹𝑉𝐹 : 𝐴𝐵 ) → 𝐹X 𝑥𝐴 𝐵 )
13 12 ex ( 𝐹𝑉 → ( 𝐹 : 𝐴𝐵𝐹X 𝑥𝐴 𝐵 ) )
14 5 13 impbid2 ( 𝐹𝑉 → ( 𝐹X 𝑥𝐴 𝐵𝐹 : 𝐴𝐵 ) )