Step |
Hyp |
Ref |
Expression |
1 |
|
ixpfn |
⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 → 𝐹 Fn 𝐴 ) |
2 |
|
elixp2 |
⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
3 |
2
|
simp3bi |
⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
4 |
|
ffnfv |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
5 |
1 3 4
|
sylanbrc |
⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
6 |
|
elex |
⊢ ( 𝐹 ∈ 𝑉 → 𝐹 ∈ V ) |
7 |
6
|
adantr |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 ∈ V ) |
8 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) |
9 |
8
|
adantl |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 Fn 𝐴 ) |
10 |
4
|
simprbi |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
11 |
10
|
adantl |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
12 |
7 9 11 2
|
syl3anbrc |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 ) |
13 |
12
|
ex |
⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 ) ) |
14 |
5 13
|
impbid2 |
⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) ) |