Metamath Proof Explorer


Theorem elixx1

Description: Membership in an interval of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013)

Ref Expression
Hypothesis ixx.1 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧𝑧 𝑆 𝑦 ) } )
Assertion elixx1 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 𝑂 𝐵 ) ↔ ( 𝐶 ∈ ℝ*𝐴 𝑅 𝐶𝐶 𝑆 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 ixx.1 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧𝑧 𝑆 𝑦 ) } )
2 1 ixxval ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 𝑂 𝐵 ) = { 𝑧 ∈ ℝ* ∣ ( 𝐴 𝑅 𝑧𝑧 𝑆 𝐵 ) } )
3 2 eleq2d ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 𝑂 𝐵 ) ↔ 𝐶 ∈ { 𝑧 ∈ ℝ* ∣ ( 𝐴 𝑅 𝑧𝑧 𝑆 𝐵 ) } ) )
4 breq2 ( 𝑧 = 𝐶 → ( 𝐴 𝑅 𝑧𝐴 𝑅 𝐶 ) )
5 breq1 ( 𝑧 = 𝐶 → ( 𝑧 𝑆 𝐵𝐶 𝑆 𝐵 ) )
6 4 5 anbi12d ( 𝑧 = 𝐶 → ( ( 𝐴 𝑅 𝑧𝑧 𝑆 𝐵 ) ↔ ( 𝐴 𝑅 𝐶𝐶 𝑆 𝐵 ) ) )
7 6 elrab ( 𝐶 ∈ { 𝑧 ∈ ℝ* ∣ ( 𝐴 𝑅 𝑧𝑧 𝑆 𝐵 ) } ↔ ( 𝐶 ∈ ℝ* ∧ ( 𝐴 𝑅 𝐶𝐶 𝑆 𝐵 ) ) )
8 3anass ( ( 𝐶 ∈ ℝ*𝐴 𝑅 𝐶𝐶 𝑆 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ ( 𝐴 𝑅 𝐶𝐶 𝑆 𝐵 ) ) )
9 7 8 bitr4i ( 𝐶 ∈ { 𝑧 ∈ ℝ* ∣ ( 𝐴 𝑅 𝑧𝑧 𝑆 𝐵 ) } ↔ ( 𝐶 ∈ ℝ*𝐴 𝑅 𝐶𝐶 𝑆 𝐵 ) )
10 3 9 bitrdi ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 𝑂 𝐵 ) ↔ ( 𝐶 ∈ ℝ*𝐴 𝑅 𝐶𝐶 𝑆 𝐵 ) ) )