Step |
Hyp |
Ref |
Expression |
1 |
|
limcval.j |
⊢ 𝐽 = ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) |
2 |
|
limcval.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
3 |
|
ellimc.g |
⊢ 𝐺 = ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) |
4 |
|
ellimc.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
5 |
|
ellimc.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
6 |
|
ellimc.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
7 |
1 2
|
limcfval |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 limℂ 𝐵 ) = { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ∧ ( 𝐹 limℂ 𝐵 ) ⊆ ℂ ) ) |
8 |
4 5 6 7
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐹 limℂ 𝐵 ) = { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ∧ ( 𝐹 limℂ 𝐵 ) ⊆ ℂ ) ) |
9 |
8
|
simpld |
⊢ ( 𝜑 → ( 𝐹 limℂ 𝐵 ) = { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ) |
10 |
9
|
eleq2d |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ↔ 𝐶 ∈ { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ) ) |
11 |
1 2 3
|
limcvallem |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) → 𝐶 ∈ ℂ ) ) |
12 |
4 5 6 11
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) → 𝐶 ∈ ℂ ) ) |
13 |
|
ifeq1 |
⊢ ( 𝑦 = 𝐶 → if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) = if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) |
14 |
13
|
mpteq2dv |
⊢ ( 𝑦 = 𝐶 → ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ) |
15 |
14 3
|
eqtr4di |
⊢ ( 𝑦 = 𝐶 → ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) = 𝐺 ) |
16 |
15
|
eleq1d |
⊢ ( 𝑦 = 𝐶 → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ↔ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
17 |
16
|
elab3g |
⊢ ( ( 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) → 𝐶 ∈ ℂ ) → ( 𝐶 ∈ { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ↔ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
18 |
12 17
|
syl |
⊢ ( 𝜑 → ( 𝐶 ∈ { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ↔ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
19 |
10 18
|
bitrd |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ↔ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |