| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limccl.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
| 2 |
|
limccl.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
| 3 |
|
limccl.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 4 |
|
ellimc2.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
| 5 |
|
limccl |
⊢ ( 𝐹 limℂ 𝐵 ) ⊆ ℂ |
| 6 |
5
|
sseli |
⊢ ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 7 |
6
|
pm4.71ri |
⊢ ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝐶 ∈ ℂ ∧ 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ) ) |
| 8 |
|
eqid |
⊢ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) = ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) |
| 9 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) |
| 10 |
8 4 9 1 2 3
|
ellimc |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 12 |
4
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 13 |
3
|
snssd |
⊢ ( 𝜑 → { 𝐵 } ⊆ ℂ ) |
| 14 |
2 13
|
unssd |
⊢ ( 𝜑 → ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ ) |
| 15 |
|
resttopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ ) → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 16 |
12 14 15
|
sylancr |
⊢ ( 𝜑 → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 18 |
12
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
| 19 |
|
ssun2 |
⊢ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) |
| 20 |
|
snssg |
⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 21 |
3 20
|
syl |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 22 |
19 21
|
mpbiri |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ) |
| 24 |
|
elun |
⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐴 ∨ 𝑧 ∈ { 𝐵 } ) ) |
| 25 |
|
velsn |
⊢ ( 𝑧 ∈ { 𝐵 } ↔ 𝑧 = 𝐵 ) |
| 26 |
25
|
orbi2i |
⊢ ( ( 𝑧 ∈ 𝐴 ∨ 𝑧 ∈ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ) |
| 27 |
24 26
|
bitri |
⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ) |
| 28 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ) ∧ 𝑧 = 𝐵 ) → 𝐶 ∈ ℂ ) |
| 29 |
|
pm5.61 |
⊢ ( ( ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ∧ ¬ 𝑧 = 𝐵 ) ↔ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 = 𝐵 ) ) |
| 30 |
1
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 31 |
30
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 = 𝐵 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 32 |
29 31
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ∧ ¬ 𝑧 = 𝐵 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 33 |
32
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ) ∧ ¬ 𝑧 = 𝐵 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 34 |
28 33
|
ifclda |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ) → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ) |
| 35 |
27 34
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ) |
| 36 |
35
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) : ( 𝐴 ∪ { 𝐵 } ) ⟶ ℂ ) |
| 37 |
|
iscnp |
⊢ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ∧ 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ↔ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) : ( 𝐴 ∪ { 𝐵 } ) ⟶ ℂ ∧ ∀ 𝑢 ∈ 𝐾 ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ) ) ) |
| 38 |
37
|
baibd |
⊢ ( ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ∧ 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) : ( 𝐴 ∪ { 𝐵 } ) ⟶ ℂ ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ↔ ∀ 𝑢 ∈ 𝐾 ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ) ) |
| 39 |
17 18 23 36 38
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ↔ ∀ 𝑢 ∈ 𝐾 ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ) ) |
| 40 |
|
iftrue |
⊢ ( 𝑧 = 𝐵 → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) = 𝐶 ) |
| 41 |
40 9
|
fvmptg |
⊢ ( ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) = 𝐶 ) |
| 42 |
22 41
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) = 𝐶 ) |
| 43 |
42
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) ∈ 𝑢 ↔ 𝐶 ∈ 𝑢 ) ) |
| 44 |
43
|
imbi1d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ↔ ( 𝐶 ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ) ) |
| 45 |
44
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ 𝑢 ∈ 𝐾 ) → ( ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ↔ ( 𝐶 ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ) ) |
| 46 |
4
|
cnfldtop |
⊢ 𝐾 ∈ Top |
| 47 |
|
cnex |
⊢ ℂ ∈ V |
| 48 |
47
|
ssex |
⊢ ( ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ → ( 𝐴 ∪ { 𝐵 } ) ∈ V ) |
| 49 |
14 48
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∪ { 𝐵 } ) ∈ V ) |
| 50 |
49
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) → ( 𝐴 ∪ { 𝐵 } ) ∈ V ) |
| 51 |
|
restval |
⊢ ( ( 𝐾 ∈ Top ∧ ( 𝐴 ∪ { 𝐵 } ) ∈ V ) → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) = ran ( 𝑤 ∈ 𝐾 ↦ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ) |
| 52 |
46 50 51
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) = ran ( 𝑤 ∈ 𝐾 ↦ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ) |
| 53 |
52
|
rexeqdv |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) → ( ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ↔ ∃ 𝑣 ∈ ran ( 𝑤 ∈ 𝐾 ↦ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ) |
| 54 |
|
vex |
⊢ 𝑤 ∈ V |
| 55 |
54
|
inex1 |
⊢ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∈ V |
| 56 |
55
|
rgenw |
⊢ ∀ 𝑤 ∈ 𝐾 ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∈ V |
| 57 |
|
eqid |
⊢ ( 𝑤 ∈ 𝐾 ↦ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) = ( 𝑤 ∈ 𝐾 ↦ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 58 |
|
eleq2 |
⊢ ( 𝑣 = ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) → ( 𝐵 ∈ 𝑣 ↔ 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ) |
| 59 |
|
imaeq2 |
⊢ ( 𝑣 = ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) = ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ) |
| 60 |
59
|
sseq1d |
⊢ ( 𝑣 = ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) → ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ↔ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) |
| 61 |
58 60
|
anbi12d |
⊢ ( 𝑣 = ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) → ( ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ↔ ( 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
| 62 |
57 61
|
rexrnmptw |
⊢ ( ∀ 𝑤 ∈ 𝐾 ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∈ V → ( ∃ 𝑣 ∈ ran ( 𝑤 ∈ 𝐾 ↦ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ↔ ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
| 63 |
56 62
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) → ( ∃ 𝑣 ∈ ran ( 𝑤 ∈ 𝐾 ↦ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ↔ ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
| 64 |
22
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ) |
| 65 |
|
elin |
⊢ ( 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↔ ( 𝐵 ∈ 𝑤 ∧ 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 66 |
65
|
rbaib |
⊢ ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) → ( 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↔ 𝐵 ∈ 𝑤 ) ) |
| 67 |
64 66
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↔ 𝐵 ∈ 𝑤 ) ) |
| 68 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝐶 ∈ ℂ ) |
| 69 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑧 ) ∈ V |
| 70 |
|
ifexg |
⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝐹 ‘ 𝑧 ) ∈ V ) → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ V ) |
| 71 |
68 69 70
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ V ) |
| 72 |
71
|
ralrimivw |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ V ) |
| 73 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) |
| 74 |
73
|
fnmpt |
⊢ ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ V → ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) Fn ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 75 |
73
|
fmpt |
⊢ ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) : ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ⟶ 𝑢 ) |
| 76 |
|
df-f |
⊢ ( ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) : ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ⟶ 𝑢 ↔ ( ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) Fn ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ⊆ 𝑢 ) ) |
| 77 |
75 76
|
bitri |
⊢ ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ( ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) Fn ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ⊆ 𝑢 ) ) |
| 78 |
77
|
baib |
⊢ ( ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) Fn ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) → ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ⊆ 𝑢 ) ) |
| 79 |
72 74 78
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ⊆ 𝑢 ) ) |
| 80 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝐶 ∈ 𝑢 ) |
| 81 |
|
elinel2 |
⊢ ( 𝑧 ∈ ( 𝑤 ∩ { 𝐵 } ) → 𝑧 ∈ { 𝐵 } ) |
| 82 |
25 40
|
sylbi |
⊢ ( 𝑧 ∈ { 𝐵 } → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) = 𝐶 ) |
| 83 |
82
|
eleq1d |
⊢ ( 𝑧 ∈ { 𝐵 } → ( if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ 𝐶 ∈ 𝑢 ) ) |
| 84 |
81 83
|
syl |
⊢ ( 𝑧 ∈ ( 𝑤 ∩ { 𝐵 } ) → ( if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ 𝐶 ∈ 𝑢 ) ) |
| 85 |
80 84
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( 𝑧 ∈ ( 𝑤 ∩ { 𝐵 } ) → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ) ) |
| 86 |
85
|
ralrimiv |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ∀ 𝑧 ∈ ( 𝑤 ∩ { 𝐵 } ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ) |
| 87 |
|
undif1 |
⊢ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) = ( 𝐴 ∪ { 𝐵 } ) |
| 88 |
87
|
ineq2i |
⊢ ( 𝑤 ∩ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ) = ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) |
| 89 |
|
indi |
⊢ ( 𝑤 ∩ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ) = ( ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ∪ ( 𝑤 ∩ { 𝐵 } ) ) |
| 90 |
88 89
|
eqtr3i |
⊢ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ∪ ( 𝑤 ∩ { 𝐵 } ) ) |
| 91 |
90
|
raleqi |
⊢ ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ∀ 𝑧 ∈ ( ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ∪ ( 𝑤 ∩ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ) |
| 92 |
|
ralunb |
⊢ ( ∀ 𝑧 ∈ ( ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ∪ ( 𝑤 ∩ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ∧ ∀ 𝑧 ∈ ( 𝑤 ∩ { 𝐵 } ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ) ) |
| 93 |
91 92
|
bitri |
⊢ ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ∧ ∀ 𝑧 ∈ ( 𝑤 ∩ { 𝐵 } ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ) ) |
| 94 |
93
|
rbaib |
⊢ ( ∀ 𝑧 ∈ ( 𝑤 ∩ { 𝐵 } ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 → ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ) ) |
| 95 |
86 94
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ) ) |
| 96 |
79 95
|
bitr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ⊆ 𝑢 ↔ ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ) ) |
| 97 |
|
elinel2 |
⊢ ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) → 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) |
| 98 |
|
eldifsni |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) → 𝑧 ≠ 𝐵 ) |
| 99 |
|
ifnefalse |
⊢ ( 𝑧 ≠ 𝐵 → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ 𝑧 ) ) |
| 100 |
98 99
|
syl |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ 𝑧 ) ) |
| 101 |
100
|
eleq1d |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) → ( if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ( 𝐹 ‘ 𝑧 ) ∈ 𝑢 ) ) |
| 102 |
97 101
|
syl |
⊢ ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) → ( if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ( 𝐹 ‘ 𝑧 ) ∈ 𝑢 ) ) |
| 103 |
102
|
ralbiia |
⊢ ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ( 𝐹 ‘ 𝑧 ) ∈ 𝑢 ) |
| 104 |
96 103
|
bitrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ⊆ 𝑢 ↔ ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ( 𝐹 ‘ 𝑧 ) ∈ 𝑢 ) ) |
| 105 |
|
df-ima |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) = ran ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ↾ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 106 |
|
inss2 |
⊢ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ⊆ ( 𝐴 ∪ { 𝐵 } ) |
| 107 |
|
resmpt |
⊢ ( ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ⊆ ( 𝐴 ∪ { 𝐵 } ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ↾ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) = ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 108 |
106 107
|
mp1i |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ↾ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) = ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 109 |
108
|
rneqd |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ran ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ↾ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) = ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 110 |
105 109
|
eqtrid |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) = ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 111 |
110
|
sseq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ⊆ 𝑢 ↔ ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ⊆ 𝑢 ) ) |
| 112 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝐹 : 𝐴 ⟶ ℂ ) |
| 113 |
112
|
ffund |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → Fun 𝐹 ) |
| 114 |
|
inss2 |
⊢ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ⊆ ( 𝐴 ∖ { 𝐵 } ) |
| 115 |
|
difss |
⊢ ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴 |
| 116 |
114 115
|
sstri |
⊢ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ⊆ 𝐴 |
| 117 |
112
|
fdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → dom 𝐹 = 𝐴 ) |
| 118 |
116 117
|
sseqtrrid |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ⊆ dom 𝐹 ) |
| 119 |
|
funimass4 |
⊢ ( ( Fun 𝐹 ∧ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ↔ ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ( 𝐹 ‘ 𝑧 ) ∈ 𝑢 ) ) |
| 120 |
113 118 119
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ↔ ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ( 𝐹 ‘ 𝑧 ) ∈ 𝑢 ) ) |
| 121 |
104 111 120
|
3bitr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ⊆ 𝑢 ↔ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) |
| 122 |
67 121
|
anbi12d |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ( 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ⊆ 𝑢 ) ↔ ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
| 123 |
122
|
rexbidva |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) → ( ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ⊆ 𝑢 ) ↔ ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
| 124 |
53 63 123
|
3bitrd |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) → ( ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ↔ ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
| 125 |
124
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ 𝑢 ∈ 𝐾 ) ∧ 𝐶 ∈ 𝑢 ) → ( ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ↔ ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
| 126 |
125
|
pm5.74da |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ 𝑢 ∈ 𝐾 ) → ( ( 𝐶 ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ↔ ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) |
| 127 |
45 126
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ 𝑢 ∈ 𝐾 ) → ( ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ↔ ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) |
| 128 |
127
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ∀ 𝑢 ∈ 𝐾 ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ↔ ∀ 𝑢 ∈ 𝐾 ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) |
| 129 |
11 39 128
|
3bitrd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ∀ 𝑢 ∈ 𝐾 ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) |
| 130 |
129
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝐶 ∈ ℂ ∧ 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ) ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑢 ∈ 𝐾 ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |
| 131 |
7 130
|
bitrid |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑢 ∈ 𝐾 ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |