Step |
Hyp |
Ref |
Expression |
1 |
|
ellimcabssub0.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
2 |
|
ellimcabssub0.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) |
3 |
|
ellimcabssub0.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
4 |
|
ellimcabssub0.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
5 |
|
ellimcabssub0.p |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
6 |
|
ellimcabssub0.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
7 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
8 |
6 7
|
2thd |
⊢ ( 𝜑 → ( 𝐶 ∈ ℂ ↔ 0 ∈ ℂ ) ) |
9 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
10 |
4 9
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
11 |
10 2
|
fmptd |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ ℂ ) |
12 |
11
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
13 |
12
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑧 ) − 0 ) = ( 𝐺 ‘ 𝑧 ) ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
15 |
|
csbov1g |
⊢ ( 𝑧 ∈ V → ⦋ 𝑧 / 𝑥 ⦌ ( 𝐵 − 𝐶 ) = ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 − 𝐶 ) ) |
16 |
15
|
elv |
⊢ ⦋ 𝑧 / 𝑥 ⦌ ( 𝐵 − 𝐶 ) = ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 − 𝐶 ) |
17 |
|
sban |
⊢ ( [ 𝑧 / 𝑥 ] ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ↔ ( [ 𝑧 / 𝑥 ] 𝜑 ∧ [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ) ) |
18 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
19 |
18
|
sbf |
⊢ ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝜑 ) |
20 |
|
clelsb1 |
⊢ ( [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) |
21 |
19 20
|
anbi12i |
⊢ ( ( [ 𝑧 / 𝑥 ] 𝜑 ∧ [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ) |
22 |
17 21
|
bitri |
⊢ ( [ 𝑧 / 𝑥 ] ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ) |
23 |
4
|
nfth |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
24 |
23
|
sbf |
⊢ ( [ 𝑧 / 𝑥 ] ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) ) |
25 |
|
sbim |
⊢ ( [ 𝑧 / 𝑥 ] ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( [ 𝑧 / 𝑥 ] ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → [ 𝑧 / 𝑥 ] 𝐵 ∈ ℂ ) ) |
26 |
24 25
|
sylbb1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) → ( [ 𝑧 / 𝑥 ] ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → [ 𝑧 / 𝑥 ] 𝐵 ∈ ℂ ) ) |
27 |
22 26
|
syl5bir |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) → ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → [ 𝑧 / 𝑥 ] 𝐵 ∈ ℂ ) ) |
28 |
4 27
|
ax-mp |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → [ 𝑧 / 𝑥 ] 𝐵 ∈ ℂ ) |
29 |
|
sbsbc |
⊢ ( [ 𝑧 / 𝑥 ] 𝐵 ∈ ℂ ↔ [ 𝑧 / 𝑥 ] 𝐵 ∈ ℂ ) |
30 |
|
sbcel1g |
⊢ ( 𝑧 ∈ V → ( [ 𝑧 / 𝑥 ] 𝐵 ∈ ℂ ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) |
31 |
30
|
elv |
⊢ ( [ 𝑧 / 𝑥 ] 𝐵 ∈ ℂ ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
32 |
29 31
|
bitri |
⊢ ( [ 𝑧 / 𝑥 ] 𝐵 ∈ ℂ ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
33 |
28 32
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
34 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
35 |
33 34
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 − 𝐶 ) ∈ ℂ ) |
36 |
16 35
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ⦋ 𝑧 / 𝑥 ⦌ ( 𝐵 − 𝐶 ) ∈ ℂ ) |
37 |
2
|
fvmpts |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ ⦋ 𝑧 / 𝑥 ⦌ ( 𝐵 − 𝐶 ) ∈ ℂ ) → ( 𝐺 ‘ 𝑧 ) = ⦋ 𝑧 / 𝑥 ⦌ ( 𝐵 − 𝐶 ) ) |
38 |
14 36 37
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑧 ) = ⦋ 𝑧 / 𝑥 ⦌ ( 𝐵 − 𝐶 ) ) |
39 |
1
|
fvmpts |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ ℂ ) → ( 𝐹 ‘ 𝑧 ) = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
40 |
14 33 39
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
41 |
40
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) = ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 − 𝐶 ) ) |
42 |
16 41
|
eqtr4id |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ⦋ 𝑧 / 𝑥 ⦌ ( 𝐵 − 𝐶 ) = ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) |
43 |
13 38 42
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) = ( ( 𝐺 ‘ 𝑧 ) − 0 ) ) |
44 |
43
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − 0 ) ) ) |
45 |
44
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − 0 ) ) < 𝑦 ) ) |
46 |
45
|
imbi2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 𝑧 ≠ 𝐷 ∧ ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑦 ) ↔ ( ( 𝑧 ≠ 𝐷 ∧ ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − 0 ) ) < 𝑦 ) ) ) |
47 |
46
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝐷 ∧ ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑦 ) ↔ ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝐷 ∧ ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − 0 ) ) < 𝑦 ) ) ) |
48 |
47
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝐷 ∧ ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑦 ) ↔ ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝐷 ∧ ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − 0 ) ) < 𝑦 ) ) ) |
49 |
48
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝐷 ∧ ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑦 ) ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝐷 ∧ ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − 0 ) ) < 𝑦 ) ) ) |
50 |
8 49
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐶 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝐷 ∧ ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑦 ) ) ↔ ( 0 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝐷 ∧ ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − 0 ) ) < 𝑦 ) ) ) ) |
51 |
4 1
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
52 |
51 3 5
|
ellimc3 |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐹 limℂ 𝐷 ) ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝐷 ∧ ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑦 ) ) ) ) |
53 |
11 3 5
|
ellimc3 |
⊢ ( 𝜑 → ( 0 ∈ ( 𝐺 limℂ 𝐷 ) ↔ ( 0 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝐷 ∧ ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − 0 ) ) < 𝑦 ) ) ) ) |
54 |
50 52 53
|
3bitr4d |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐹 limℂ 𝐷 ) ↔ 0 ∈ ( 𝐺 limℂ 𝐷 ) ) ) |