| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ellimciota.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 2 |  | ellimciota.a | ⊢ ( 𝜑  →  𝐴  ⊆  ℂ ) | 
						
							| 3 |  | ellimciota.b | ⊢ ( 𝜑  →  𝐵  ∈  ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ) | 
						
							| 4 |  | ellimciota.4 | ⊢ ( 𝜑  →  ( 𝐹  limℂ  𝐵 )  ≠  ∅ ) | 
						
							| 5 |  | ellimciota.k | ⊢ 𝐾  =  ( TopOpen ‘ ℂfld ) | 
						
							| 6 |  | eleq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  ( 𝐹  limℂ  𝐵 )  ↔  𝑦  ∈  ( 𝐹  limℂ  𝐵 ) ) ) | 
						
							| 7 | 6 | cbviotavw | ⊢ ( ℩ 𝑥 𝑥  ∈  ( 𝐹  limℂ  𝐵 ) )  =  ( ℩ 𝑦 𝑦  ∈  ( 𝐹  limℂ  𝐵 ) ) | 
						
							| 8 |  | iotaex | ⊢ ( ℩ 𝑦 𝑦  ∈  ( 𝐹  limℂ  𝐵 ) )  ∈  V | 
						
							| 9 |  | n0 | ⊢ ( ( 𝐹  limℂ  𝐵 )  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  ( 𝐹  limℂ  𝐵 ) ) | 
						
							| 10 | 4 9 | sylib | ⊢ ( 𝜑  →  ∃ 𝑥 𝑥  ∈  ( 𝐹  limℂ  𝐵 ) ) | 
						
							| 11 | 1 2 3 5 | limcmo | ⊢ ( 𝜑  →  ∃* 𝑥 𝑥  ∈  ( 𝐹  limℂ  𝐵 ) ) | 
						
							| 12 |  | df-eu | ⊢ ( ∃! 𝑥 𝑥  ∈  ( 𝐹  limℂ  𝐵 )  ↔  ( ∃ 𝑥 𝑥  ∈  ( 𝐹  limℂ  𝐵 )  ∧  ∃* 𝑥 𝑥  ∈  ( 𝐹  limℂ  𝐵 ) ) ) | 
						
							| 13 | 10 11 12 | sylanbrc | ⊢ ( 𝜑  →  ∃! 𝑥 𝑥  ∈  ( 𝐹  limℂ  𝐵 ) ) | 
						
							| 14 |  | eleq1 | ⊢ ( 𝑥  =  ( ℩ 𝑦 𝑦  ∈  ( 𝐹  limℂ  𝐵 ) )  →  ( 𝑥  ∈  ( 𝐹  limℂ  𝐵 )  ↔  ( ℩ 𝑦 𝑦  ∈  ( 𝐹  limℂ  𝐵 ) )  ∈  ( 𝐹  limℂ  𝐵 ) ) ) | 
						
							| 15 | 14 | iota2 | ⊢ ( ( ( ℩ 𝑦 𝑦  ∈  ( 𝐹  limℂ  𝐵 ) )  ∈  V  ∧  ∃! 𝑥 𝑥  ∈  ( 𝐹  limℂ  𝐵 ) )  →  ( ( ℩ 𝑦 𝑦  ∈  ( 𝐹  limℂ  𝐵 ) )  ∈  ( 𝐹  limℂ  𝐵 )  ↔  ( ℩ 𝑥 𝑥  ∈  ( 𝐹  limℂ  𝐵 ) )  =  ( ℩ 𝑦 𝑦  ∈  ( 𝐹  limℂ  𝐵 ) ) ) ) | 
						
							| 16 | 8 13 15 | sylancr | ⊢ ( 𝜑  →  ( ( ℩ 𝑦 𝑦  ∈  ( 𝐹  limℂ  𝐵 ) )  ∈  ( 𝐹  limℂ  𝐵 )  ↔  ( ℩ 𝑥 𝑥  ∈  ( 𝐹  limℂ  𝐵 ) )  =  ( ℩ 𝑦 𝑦  ∈  ( 𝐹  limℂ  𝐵 ) ) ) ) | 
						
							| 17 | 7 16 | mpbiri | ⊢ ( 𝜑  →  ( ℩ 𝑦 𝑦  ∈  ( 𝐹  limℂ  𝐵 ) )  ∈  ( 𝐹  limℂ  𝐵 ) ) | 
						
							| 18 | 7 17 | eqeltrid | ⊢ ( 𝜑  →  ( ℩ 𝑥 𝑥  ∈  ( 𝐹  limℂ  𝐵 ) )  ∈  ( 𝐹  limℂ  𝐵 ) ) |