| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq1 |
⊢ ( 𝑡 = 𝑇 → ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) |
| 2 |
|
fveq1 |
⊢ ( 𝑡 = 𝑇 → ( 𝑡 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) |
| 3 |
2
|
oveq2d |
⊢ ( 𝑡 = 𝑇 → ( 𝑥 · ( 𝑡 ‘ 𝑦 ) ) = ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) ) |
| 4 |
|
fveq1 |
⊢ ( 𝑡 = 𝑇 → ( 𝑡 ‘ 𝑧 ) = ( 𝑇 ‘ 𝑧 ) ) |
| 5 |
3 4
|
oveq12d |
⊢ ( 𝑡 = 𝑇 → ( ( 𝑥 · ( 𝑡 ‘ 𝑦 ) ) + ( 𝑡 ‘ 𝑧 ) ) = ( ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) ) |
| 6 |
1 5
|
eqeq12d |
⊢ ( 𝑡 = 𝑇 → ( ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑡 ‘ 𝑦 ) ) + ( 𝑡 ‘ 𝑧 ) ) ↔ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 7 |
6
|
ralbidv |
⊢ ( 𝑡 = 𝑇 → ( ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑡 ‘ 𝑦 ) ) + ( 𝑡 ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 8 |
7
|
2ralbidv |
⊢ ( 𝑡 = 𝑇 → ( ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑡 ‘ 𝑦 ) ) + ( 𝑡 ‘ 𝑧 ) ) ↔ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 9 |
|
df-lnfn |
⊢ LinFn = { 𝑡 ∈ ( ℂ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑡 ‘ 𝑦 ) ) + ( 𝑡 ‘ 𝑧 ) ) } |
| 10 |
8 9
|
elrab2 |
⊢ ( 𝑇 ∈ LinFn ↔ ( 𝑇 ∈ ( ℂ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 11 |
|
cnex |
⊢ ℂ ∈ V |
| 12 |
|
ax-hilex |
⊢ ℋ ∈ V |
| 13 |
11 12
|
elmap |
⊢ ( 𝑇 ∈ ( ℂ ↑m ℋ ) ↔ 𝑇 : ℋ ⟶ ℂ ) |
| 14 |
13
|
anbi1i |
⊢ ( ( 𝑇 ∈ ( ℂ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) ) ↔ ( 𝑇 : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 15 |
10 14
|
bitri |
⊢ ( 𝑇 ∈ LinFn ↔ ( 𝑇 : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) ) ) |